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Literature on Mathematical Optimization

● Alan Parkinson, Richard Balling, John Hedengren:
Optimization Methods for Engineering Design. 
Applications and Theory.
Brigham Young University, 2013.

● URL: http://apmonitor.com/me575/ (complete book)

● Roger Fletcher:
Practical Methods of Optimization.
2nd Edition. Wiley, 2000.

● Stephen Boyd, Lieven Vandenberghe:
Convex Optimization.
Cambridge University Press, 2007.

● URL: http://web.stanford.edu/~boyd/cvxbook/ 
(complete book, lecture slides, and exercise data)

http://apmonitor.com/me575/
http://web.stanford.edu/~boyd/cvxbook/
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Basics of Mathematical Optimization

General definition of optimization problem:

● Given is a cost function (objective function)                    

● Aim: Find parameters             that minimize g subject to constraints
                                       for constraint functions 

Note: g might have multiple local minima next to global minimum

● Degree of freedom for parameters x is n { l 

● Without constraints (l = 0): unconstrained optimization problem:
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Basics of Mathematical Optimization

Single-parameter function:

i. e., slope at optimum is zero

Multiple-parameter function:

i. e., gradient is zero vector
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● Necessary condition for (local) optimum of function 
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Basics of Mathematical Optimization

● Slope is zero for all critical points: Minima, maxima, and saddle points

● Necessary and sufficient condition for a minimal point:

● Slope is zero:                , curvature is positive: 

● Gradient is zero:                  , Hesse matrix 

is positive-semidefinite (i. e.:                                                    )

minimum

maximum

saddle point
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Basics of Mathematical Optimization

global minimum

local minimum
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global minimum

● Analytic solution: Find closed-form solution for                     if possible,
prune results with second derivative

● Numeric solution: Use iterative methods, e. g., gradient descent or 
Newton methods (Gauss-Newton, Levenberg-Marquardt algorithm)

● But: Which minimum is found depends on starting point here!

● Convex functions (e. g., quadratic functions) have unique minimum
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Basics of Mathematical Optimization

Classes of optimization problems

● Linear optimization problem for linear functions                    ,
i. e.,                                              for all 

● Convex optimization problem for convex functions                    ,
i. e.,                                                                 for all

● Unconstrained problem for 

● Least squares problem for                                                   and 
with residual functions 

● Linear least squares problem for 
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Least Squares

Common problem statement for least squares optimization:

● Given is a model function              that maps input values              to 
output values            which is parametrized by  

● The residual functions                                  describe the difference 
between measured output values and predicted values for given model 
parameters x 

● Given m measurements                          for respective input vectors 
                          , the i-th residual function is 

● The objective function is given by

i. e., the sum of squared residuals is minimized (“data fitting”):
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Examples for Least Squares Applications

● Line fitting, plane fitting (linear least squares), e. g.:

Find 2D line parameters              to fit data points           :

● Curve fitting, polynomial fitting (linear least squares), e. g.:

Find polynomial coefficients              to fit data points           :

● Least squares problems are very
common in Computer Vision
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Linear Least Squares

Linear least squares optimization problem: 

● Given is linear model function

● Given are m residual functions 

defined by data points 

● The objective function is given by

where 

Solution:

● Necessary condition for minimum:

derived from

● Minimum is unique because g is quadratic (= convex) function
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Linear Least Squares

Error propagation:

● Assume ground truth values                                         for input vectors 
                           and ground truth model parameter vector              ,
i. e., 

● Measured values are                                        with measurement errors 
                                         , i. e., 

● Linear error propagation:

● For normal-distributed measurement errors                        :



13ETN-FPI Training School on Plenoptic Sensing

Linear Least Squares Problem

● Example: Consider 1D-LLS problem with single parameter 

● linear model function

● input data

● measurements 

● residual functions are 

● Task:                 with

● Solution: 
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Linear Least Squares Problem

● Example: Ground truth value is               ,            measurements    
for inputs     , measurement error from normal distribution
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Nonlinear Least Squares Problem

● Example: Consider 1D-NLS problem with single parameter 

● nonlinear model function

● input data

● measurements 

● residual functions are 

● Task:                with

● Solution:

● Analytic: Find closed-form solution for

● Iterative methods, e. g., gradient descent methods, Newton methods 
(Gauss-Newton, Levenberg-Marquardt algorithm)
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Nonlinear Least Squares Problem

● Example: Ground truth value is            ,            measurements    
for inputs     , measurement error from normal distribution
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Gradient Descent Algorithm

● Aim: Find local minimum of nonlinear                    starting from

● In each step                          :

● Compute gradient at current      :

● Move “downhill”: 

● Choose stepwidth       so that 
(different strategies, e. g., steepest descent: use line search
                                            )

● Steps orthogonal to contour lines of g

● Terminate if 

● Convergence: Stable, but slow

● Example: Rosenbrock’s “banana” function
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Newton Methods

● Aim: Find local minimum of nonlinear                    starting from

● In each step                         :

● Approximate with Taylor expansion of 2nd order:

● Solve                   for approximation, solution is 

● Update x for next iteration: 

● Terminate if 

● Convergence: Quadratic convergence, often combined with line search

● Drawback: Hessian Hg must be computed at each step



20ETN-FPI Training School on Plenoptic Sensing

Gauss-Newton Algorithm

● Aim: Find local minimum of NLS problem near initial solution

● In each step                         :

● Approximate 

● Solve                                 ,  solution is 

● Update x for next iteration: 

● Terminate if                      ,                          or 

● Convergence: Unstable, but fast

with
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Gauss-Newton Algorithm
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● Example: Ground truth value is            ,            measurements    
for inputs     , measurement error from normal distribution
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Levenberg-Marquardt Algorithm

● Gauss-Newton approximation is not good when away from the minimum
in regions where curvature is negative:

● Better use steepest descent step in such cases.

● Steppest descent can progress slowly when close to the minimum (“zig-
zagging”):

● Better use Gauss-Newton step in such cases.

● The Levenberg-Marquardt algorithm provides mechanism for changing 
between steepest descent and Gauss-Newton steps depending on
how good the approximation is locally. 
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Levenberg-Marquardt Algorithm

● Aim: Find local minimum of NLS problem near initial solution

● In each step                         :

● Approximate 

● Solve                                   with damping factor 

solution is 

● Update x for next iteration: 

● Update Ö for next iteration to improve convergence

● Terminate if                      ,                          or 

with
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Constrained Optimization

Consider optimization problem with equality constraint:

● Given is a cost function                    

and constraint function

● Aim: Find parameters              that minimize g subject to 

Solutions:

● Add penalty term to cost function (with heuristic weight Ö):

● Pro: Can be solved with default methods, e. g., Levenberg-Marquardt

● Contra: Result depends on choice of Ö 

● Solve with Lagrange multiplier method
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Constrained Optimization

Lagrange multiplier: 

● Note: Gradient of g is parallel to gradient of h at a constrained minimum
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Constrained Optimization

Lagrange multiplier: 

● Note: Gradient of g is parallel to gradient of h at a constrained minimum

● This is described by critical points of Lagrange function L, i. e., extension 
of g by h scaled with an additional parameter Õ (Lagrange multiplier): 

● Critical point conditions: 

● Solve                         to obtain constrained minima of g 

→ gradients are parallel

→ constraint is satisfied
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Constrained Optimization

● Example: Solve underconstrained linear least squares problem for unit 
length parameter vector x:

● Lagrange function is: 

● Critical point (i. e., constrained minimum of g) satisfies:

● Solution x is unit length eigenvector of matrix

● Can be solved via matrix decomposition (e. g., via SVD)



28ETN-FPI Training School on Plenoptic Sensing

Optimization Problems in Computer Vision

● Relative pose estimation: Estimate rotation and translation between
two cameras from 2D/2D point correspondences

● Absolute pose estimation: Estimate camera rotation and translation 
from 2D/3D point correspondences

● Absolute orientation: Estimate rotation and translation between two 
point sets from 3D/3D point correspondences

● Camera calibration: Estimate camera function from 2D/3D point 
correspondences

● Stereo calibration: Estimate rotation and translation between two 
cameras from 2D/3D point correspondences

● Stereo reconstruction: Estimate 3D point from 2D projections in two 
camera images with known stereo calibration
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