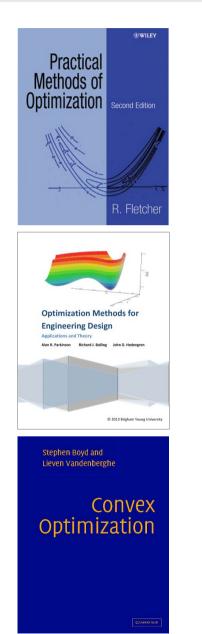


Outline

Introduction

- Part I: Basics of Mathematical Optimization
 - Linear Least Squares
 - Nonlinear Optimization
- Part II: Basics of Computer Vision
 - Camera Model
 - Multi-Camera Model
 - Multi-Camera Calibration
- Part III: Depth Cameras
 - Passive Stereo
 - Structured Light Cameras
 - Time of Flight Cameras

Literature on Mathematical Optimization



Multimedia

Information

Processina

 Roger Fletcher: *Practical Methods of Optimization.* 2nd Edition. Wiley, 2000.

- Alan Parkinson, Richard Balling, John Hedengren: Optimization Methods for Engineering Design. Applications and Theory. Brigham Young University, 2013.
- URL: http://apmonitor.com/me575/ (complete book)
- Stephen Boyd, Lieven Vandenberghe: *Convex Optimization.* Cambridge University Press, 2007.
- URL: http://web.stanford.edu/~boyd/cvxbook/ (complete book, lecture slides, and exercise data)

General definition of optimization problem:

- Given is a cost function (objective function) $g: \mathbb{R}^n \to \mathbb{R}$
- Aim: Find parameters $x \in \mathbb{R}^n$ that minimize g subject to constraints $h_1(x) \ge 0, \dots, h_l(x) \ge 0$ for constraint functions $h_1, \dots, h_l : \mathbb{R}^n \to \mathbb{R}$

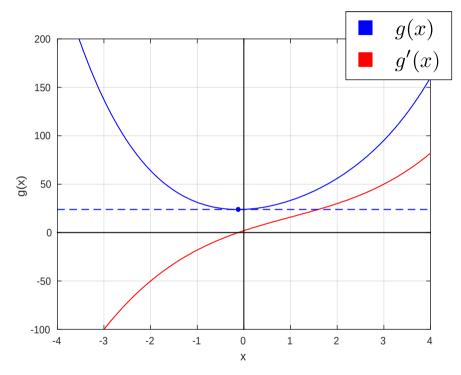
$$\min_{\boldsymbol{x} \in \mathbb{R}^n} g(\boldsymbol{x}) \text{ s.t. } h_k(\boldsymbol{x}) \ge 0 \quad \forall k = 1, \dots, l$$

Note: *g* might have multiple local minima next to global minimum

- Degree of freedom for parameters \boldsymbol{x} is n-l
- Without constraints (l = 0): unconstrained optimization problem:

$$\min_{oldsymbol{x}\in\mathbb{R}^n}g(oldsymbol{x})$$

• Necessary condition for (local) optimum of function $g : \mathbb{R}^n \to \mathbb{R}$



Multimedia

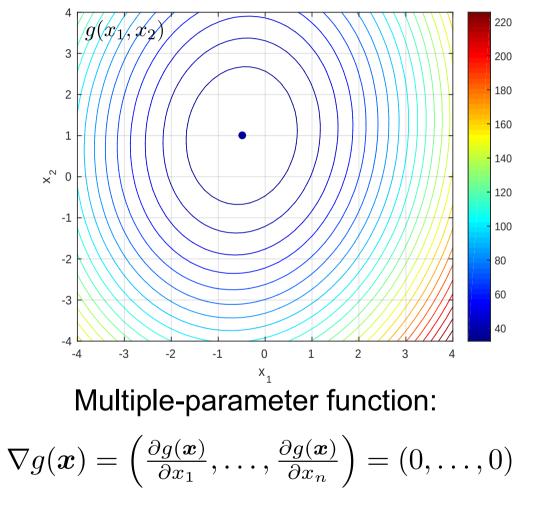
Information

Processina

Single-parameter function:

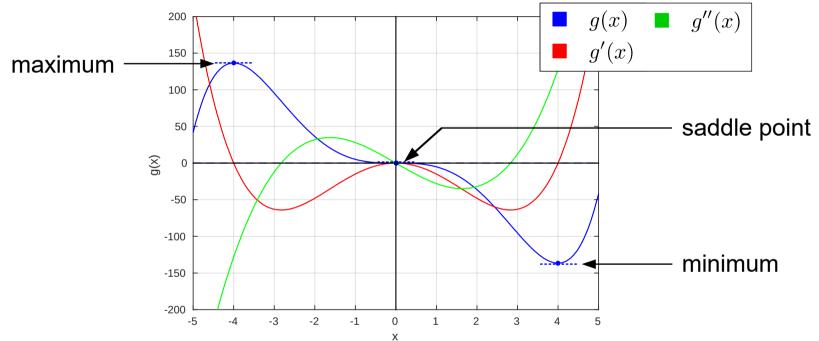
$$g'(x) = \frac{\partial g(x)}{\partial x} = 0$$

i. e., slope at optimum is zero



i. e., gradient is zero vector

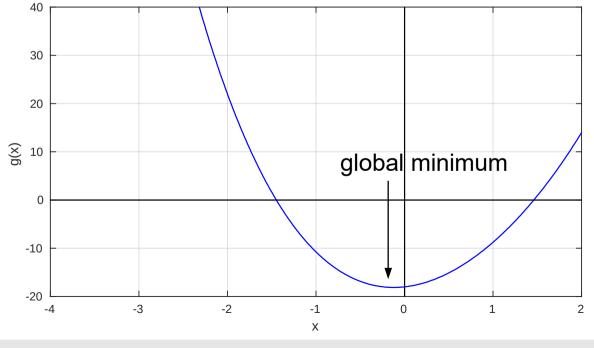
• Slope is zero for all critical points: Minima, maxima, and saddle points



Necessary and sufficient condition for a minimal point:

- Slope is zero: g'(x) = 0, curvature is positive: g''(x) > 0
- Gradient is zero: $\nabla g(\boldsymbol{x}) = \boldsymbol{0}$, Hesse matrix $\mathbf{H}_g(\boldsymbol{x}) := \left(\frac{\partial^2 g(\boldsymbol{x})}{\partial x_i \partial x_j}\right)_{i,j=1,...,n}$ is positive-semidefinite (*i. e.:* $\boldsymbol{u}^T \mathbf{H}_g(\boldsymbol{x}) \boldsymbol{u} > 0 \ \forall \boldsymbol{u} \in \mathbb{R}^n, \boldsymbol{u} \neq \boldsymbol{0}$)

- Analytic solution: Find closed-form solution for $\nabla g(x) = 0$ if possible, prune results with second derivative
- Numeric solution: Use iterative methods, *e. g.,* gradient descent or Newton methods (Gauss-Newton, Levenberg-Marquardt algorithm)
 - But: Which minimum is found depends on starting point here!
 - Convex functions (e. g., quadratic functions) have unique minimum



ETN-FPI Training School on Plenoptic Sensing

european training network on full parallax imaging

Classes of optimization problems $\min_{\boldsymbol{x} \in \mathbb{R}^n} g(\boldsymbol{x})$ s.t. $h_k(\boldsymbol{x}) \ge 0 \quad \forall k = 1, \dots, l$

- Linear optimization problem for linear functions g, h_1, \ldots, h_l , *i. e.*, $g(a\boldsymbol{x} + b\boldsymbol{y}) = ag(\boldsymbol{x}) + bg(\boldsymbol{y})$ for all $a, b \in \mathbb{R}, \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$
- Convex optimization problem for convex functions g, h_1, \ldots, h_l , *i.* e., $g(a\boldsymbol{x} + (1-a)\boldsymbol{y}) \leq ag(\boldsymbol{x}) + (1-a)g(\boldsymbol{y})$ for all $a \in [0,1], \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$
- Unconstrained problem for l = 0
- Least squares problem for $g(\boldsymbol{x}) = \|\boldsymbol{f}(\boldsymbol{x})\|^2$, $\boldsymbol{f}: \mathbb{R}^n \to \mathbb{R}^m$ and l = 0with residual functions $\boldsymbol{f}(\boldsymbol{x}) = (f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x}))^T$
- Linear least squares problem for $\boldsymbol{f}(\boldsymbol{x}) = \mathbf{A}\boldsymbol{x} \boldsymbol{b}, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m$

Outline

- Introduction
- Part I: Basics of Mathematical Optimization

• Linear Least Squares

- Nonlinear Optimization
- Part II: Basics of Computer Vision
 - Camera Model
 - Multi-Camera Model
 - Multi-Camera Calibration
- Part III: Depth Cameras
 - Passive Stereo
 - Structured Light Cameras
 - Time of Flight Cameras

Least Squares

Common problem statement for least squares optimization:

- Given is a model function b(a, x) that maps input values $a \in \mathbb{R}^k$ to output values $b \in \mathbb{R}$ which is parametrized by $x \in \mathbb{R}^n$
- The residual functions $f_1, \ldots, f_m : \mathbb{R}^n \to \mathbb{R}$ describe the difference between measured output values and predicted values for given model parameters \boldsymbol{x}
- Given *m* measurements $b_1, \ldots, b_m \in \mathbb{R}$ for respective input vectors $a_1, \ldots, a_m \in \mathbb{R}^k$, the *i*-th residual function is $f_i(x) = b(a_i, x) b_i$
- The objective function is given by $g(\boldsymbol{x}) = \sum_{i=1} f_i(\boldsymbol{x})^2 = \|\boldsymbol{f}(\boldsymbol{x})\|^2$
 - *i. e.,* the sum of squared residuals is minimized ("data fitting"):

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \sum_{i=1}^m (b(\boldsymbol{a}_i, \boldsymbol{x}) - b_i)^2$$

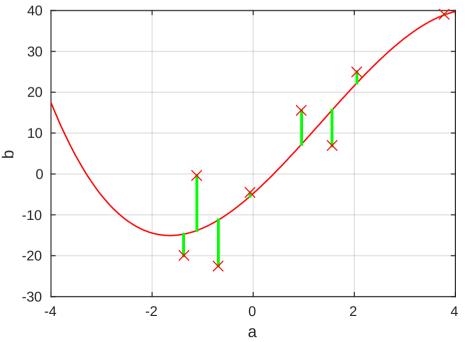
Examples for Least Squares Applications

- Line fitting, plane fitting (linear least squares), *e. g.:* Find 2D line parameters $x \in \mathbb{R}^2$ to fit data points (a_i, b_i) : $b(a_i, x) = x_1 a_i + x_2 = b_i$
- Curve fitting, polynomial fitting (linear least squares), e. g.:

Find polynomial coefficients $\boldsymbol{x} \in \mathbb{R}^n$ to fit data points (a_i, b_i) : $b(a_i, \boldsymbol{x}) = \sum_{i=1}^n a_i^{n-j} x_j = b_i$

 Least squares problems are very common in Computer Vision

i=1



Linear Least Squares

Multimedia

Linear least squares optimization problem:

- Given is linear model function $b(a, x) = a^T x$
- Given are *m* residual functions $f_i = b(a_i, x) = a_i^T x b_i$ defined by data points $(a_i, b_i) \in \mathbb{R}^n \times \mathbb{R}$
- The objective function is given by $g(x) = \sum_{i=1} f_i(x)^2 = \|\mathbf{A}x b\|^2$ where $\mathbf{A} := (a_1 \cdots a_m)^T$

Solution:

• Necessary condition for minimum:

$$\nabla g(\boldsymbol{x}) = \boldsymbol{0} \Rightarrow \mathbf{A}^T \mathbf{A} \boldsymbol{x} = \mathbf{A}^T \boldsymbol{b} \Rightarrow \boldsymbol{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \boldsymbol{b}$$

derived from $g(\boldsymbol{x}) = \boldsymbol{x}^T \mathbf{A}^T \mathbf{A} \boldsymbol{x} - 2 \boldsymbol{x}^T \mathbf{A}^T \boldsymbol{b} + \boldsymbol{b}^T \boldsymbol{b}$

• Minimum is unique because g is quadratic (= convex) function

Linear Least Squares

Error propagation:

- Assume ground truth values $\boldsymbol{b}^* = (b_1^*, \dots, b_m^*)^T \in \mathbb{R}^m$ for input vectors $\boldsymbol{a}_1, \dots, \boldsymbol{a}_m \in \mathbb{R}^n$ and ground truth model parameter vector $\boldsymbol{x}^* \in \mathbb{R}^n$, *i. e.*, $\mathbf{A}\boldsymbol{x}^* = \boldsymbol{b}^*$
- Measured values are $\boldsymbol{b} = (b_1, \dots, b_m)^T \in \mathbb{R}^m$ with measurement errors $\boldsymbol{\varepsilon}_b = (\varepsilon_{b_1}, \dots, \varepsilon_{b_m})^T \in \mathbb{R}^m$, *i. e.*, $\boldsymbol{b} = \boldsymbol{b}^* + \boldsymbol{\varepsilon}_b$
- Linear error propagation:

$$oldsymbol{x} = \underbrace{(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T}_{\mathbf{A}^\dagger} oldsymbol{b} = \mathbf{A}^\dagger (oldsymbol{b}^* + oldsymbol{arepsilon}_b) = \mathbf{A}^\dagger \mathbf{A} oldsymbol{x}^* + \underbrace{\mathbf{A}^\dagger oldsymbol{arepsilon}_b}_{oldsymbol{arepsilon}_x} = oldsymbol{x}^* + oldsymbol{arepsilon}_x$$

• For normal-distributed measurement errors $\varepsilon_b \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_b)$:

$$\Rightarrow \boldsymbol{\varepsilon}_{x} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}_{x}), \ \boldsymbol{\Sigma}_{x} = \mathbf{A}^{\dagger} \boldsymbol{\Sigma}_{b} (\mathbf{A}^{\dagger})^{T} = (\mathbf{A}^{T} \mathbf{A})^{-1} (\mathbf{A}^{T} \boldsymbol{\Sigma}_{b} \mathbf{A}) (\mathbf{A}^{T} \mathbf{A})^{-T}$$

Institut /// C A U

Linear Least Squares Problem

- **Example:** Consider 1D-LLS problem with single parameter $x \in \mathbb{R}$
 - linear model function b(a, x) = ax
 - input data $a_1, \ldots, a_m \in \mathbb{R}$
 - measurements $b_1, \ldots, b_m \in \mathbb{R}$
 - residual functions are $f_i(x) := b(a_i, x) b_i, i = 1, \dots, m$

• Task:
$$\min_{x \in \mathbb{R}} g(x)$$
 with $g(x) = \sum_{i=1}^{n} f_i(x)^2 = \|ax - b\|^2$

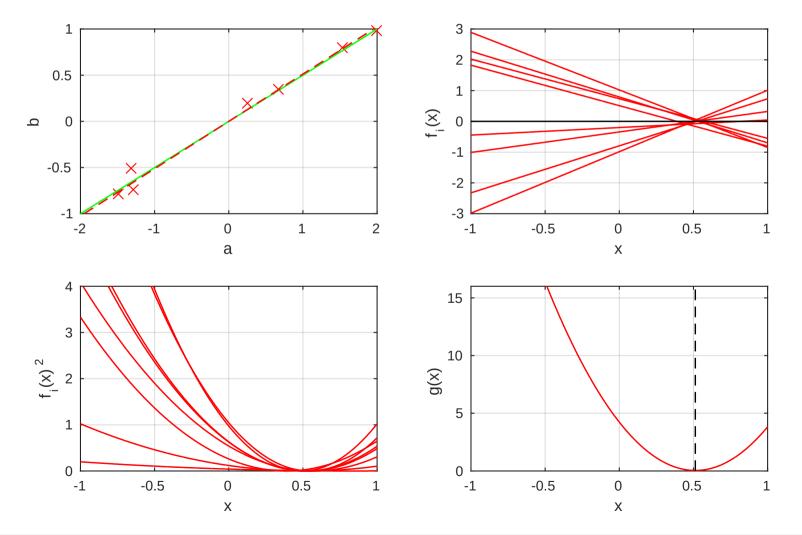
• Solution: $g'(x) = 0 \Rightarrow a^T a x = a^T b \Rightarrow x = \frac{a^T b}{a^T a}$

Linear Least Squares Problem

Multimedia

Information Processing

• **Example:** Ground truth value is $x^* = 0.5$, m = 8 measurements b_i for inputs a_i , measurement error from normal distribution $\varepsilon_b \sim \mathcal{N}(0, 0.1)$



ETN-FPI Training School on Plenoptic Sensing

on full parallax imaging

Outline

- Introduction
- Part I: Basics of Mathematical Optimization
 - Linear Least Squares
 - Nonlinear Optimization
- Part II: Basics of Computer Vision
 - Camera Model
 - Multi-Camera Model
 - Multi-Camera Calibration
- Part III: Depth Cameras
 - Passive Stereo
 - Structured Light Cameras
 - Time of Flight Cameras

Institut /// C A U

Nonlinear Least Squares Problem

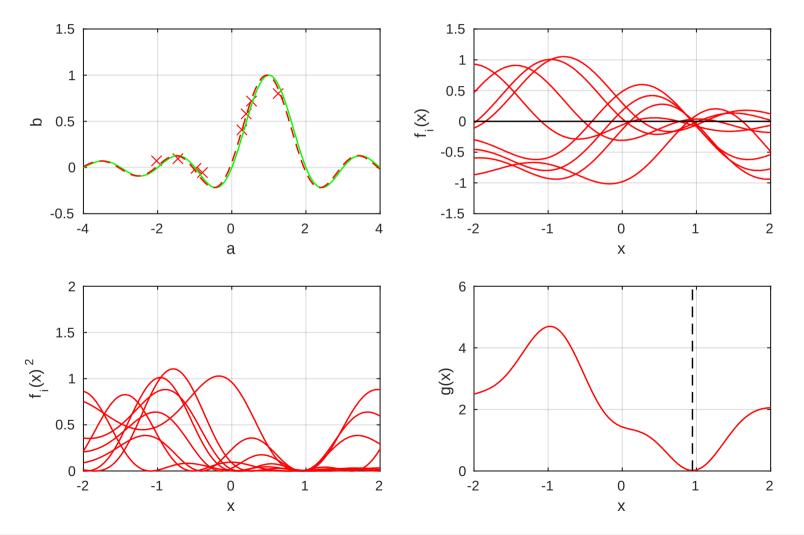
- **Example:** Consider 1D-NLS problem with single parameter $x \in \mathbb{R}$
 - nonlinear model function $b(a, x) = \operatorname{sinc}(a x)$
 - input data $a_1, \ldots, a_m \in \mathbb{R}$
 - measurements $b_1, \ldots, b_m \in \mathbb{R}$
 - residual functions are $f_i(x) := b(a_i, x) b_i, i = 1, ..., m$

• Task:
$$\min_{x \in \mathbb{R}} g(x)$$
 with $g(x) = \sum_{i=1}^{n} f_i(x)^2 = \sum_{i=1}^{n} (\operatorname{sinc}(a_i - x) - b_i)^2$

- Solution:
 - Analytic: Find closed-form solution for $g'(x) = \sum 2f_i(x)f'_i(x) = 0$
 - Iterative methods, *e. g.*, gradient descent methods, Newton methods (Gauss-Newton, Levenberg-Marquardt algorithm)

Nonlinear Least Squares Problem

• **Example:** Ground truth value is $x^* = 1$, m = 8 measurements b_i for inputs a_i , measurement error from normal distribution $\varepsilon_b \sim \mathcal{N}(0, 0.1)$



ETN-FPI Training School on Plenoptic Sensing

on full parallax imaging

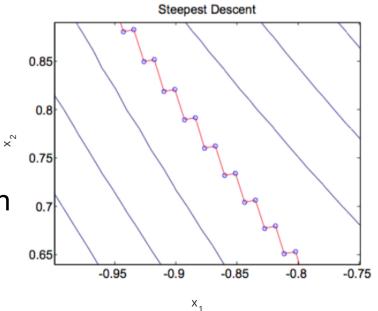
Gradient Descent Algorithm

Multimedia

Information

Processina

- Aim: Find local minimum of nonlinear $g: \mathbb{R}^n o \mathbb{R}$ starting from $x_0 \in \mathbb{R}^n$
- In each step $k = 0, \ldots, k_{\max}$:
 - Compute gradient at current \boldsymbol{x}_k : $\nabla g(\boldsymbol{x}_k) = \left(\frac{\partial g(\boldsymbol{x}_k)}{\partial x_1}, \dots, \frac{\partial g(\boldsymbol{x}_k)}{\partial x_n}\right)$
 - Move "downhill": $oldsymbol{x}_{k+1} := oldsymbol{x}_k + lpha_k \Delta oldsymbol{x}, \ \Delta oldsymbol{x} :=
 abla g(oldsymbol{x}_k)^T$
 - Choose stepwidth α_k so that $g(\boldsymbol{x}_k + \alpha_k \Delta \boldsymbol{x}) < g(\boldsymbol{x}_k)$ (different strategies, *e. g.*, steepest descent: use line search $\alpha_k = \arg \min g(\boldsymbol{x}_k + \alpha \Delta \boldsymbol{x})$)
 - Steps orthogonal to contour lines of g
 - Terminate if $\|\nabla g(\boldsymbol{x}_k)\| < \varepsilon_{\mathrm{grad}}$
- Convergence: Stable, but slow
- **Example:** Rosenbrock's "banana" function



🔄 european training network

🔆 🔆 on full parallax imaging

Newton Methods

- Aim: Find local minimum of nonlinear $g: \mathbb{R}^n \to \mathbb{R}$ starting from $x_0 \in \mathbb{R}^n$
- In each step $k = 0, \ldots, k_{\max}$:
 - Approximate with Taylor expansion of 2nd order: $g(\boldsymbol{x}_k + \Delta \boldsymbol{x}) \approx g(\boldsymbol{x}_k) + \nabla g(\boldsymbol{x}_k) \Delta \boldsymbol{x} + \frac{1}{2} \Delta \boldsymbol{x}^T \mathbf{H}_g(\boldsymbol{x}_k) \Delta \boldsymbol{x}$
 - Solve $\nabla g(\boldsymbol{x}) = \boldsymbol{0}$ for approximation, solution is $\nabla g(\boldsymbol{x}_k) + \mathbf{H}_g(\boldsymbol{x}_k) \Delta \boldsymbol{x} = \boldsymbol{0} \Rightarrow \Delta \boldsymbol{x} := -\mathbf{H}_g(\boldsymbol{x}_k)^{-1} \nabla g(\boldsymbol{x}_k)$
 - Update x for next iteration: $oldsymbol{x}_{k+1} := oldsymbol{x}_k + \Delta oldsymbol{x}$
 - Terminate if $\|\nabla g(\boldsymbol{x}_k)\| < \varepsilon_{\text{grad}}$
- **Convergence:** Quadratic convergence, often combined with line search
- **Drawback:** Hessian \mathbf{H}_{g} must be computed at each step

Gauss-Newton Algorithm

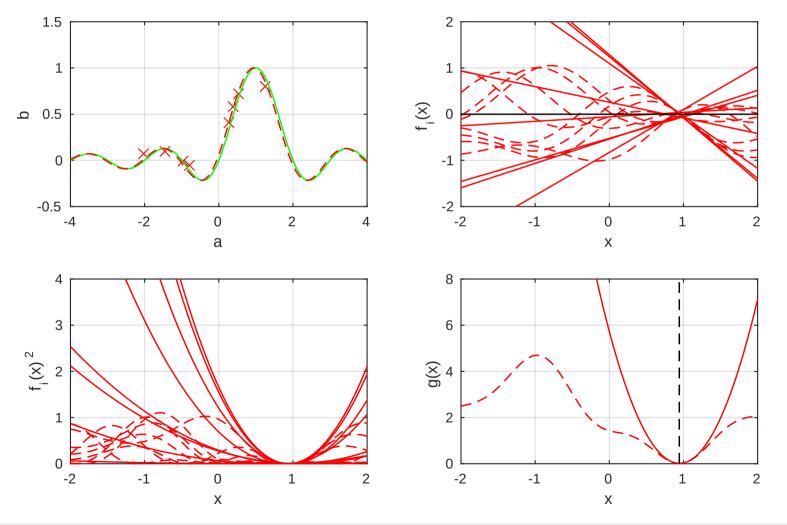
• Aim: Find local minimum of NLS problem near initial solution $oldsymbol{x}_0 \in \mathbb{R}^n$

$$\min_{oldsymbol{x}\in\mathbb{R}^n}g(oldsymbol{x})$$
 with $g(oldsymbol{x})=\|oldsymbol{f}(oldsymbol{x})\|^2=\sum_{i=1}^m f_i(oldsymbol{x})^2$

- In each step $k = 0, \ldots, k_{\max}$:
 - Approximate $f(x_k + \Delta x) \approx \underbrace{f(x_k)}_{f} + \underbrace{\frac{\partial f(x_k)}{\partial x}}_{f} \Delta x = \mathbf{J}_k \Delta x + f_k$
 - Solve $\min_{\Delta \boldsymbol{x} \in \mathbb{R}^n} \| \mathbf{J}_k \Delta \boldsymbol{x} + \boldsymbol{f}_k \|^2$, solution is $\Delta \boldsymbol{x} := -(\mathbf{J}_k^T \mathbf{J}_k)^{-1} \mathbf{J}_k^T \boldsymbol{f}_k$
 - Update x for next iteration: $oldsymbol{x}_{k+1} := oldsymbol{x}_k + \Delta oldsymbol{x}$
 - Terminate if $\|\boldsymbol{f}_k\| < \varepsilon_{\mathrm{error}}, \|\Delta \boldsymbol{x}\| < \varepsilon_{\mathrm{param}}$ or $\|\mathbf{J}_k^T \boldsymbol{f}_k\| < \varepsilon_{\mathrm{grad}}$
- Convergence: Unstable, but fast

Gauss-Newton Algorithm

• **Example:** Ground truth value is $x^* = 1$, m = 8 measurements b_i for inputs a_i , measurement error from normal distribution $\varepsilon_b \sim \mathcal{N}(0, 0.1)$



ETN-FPI Training School on Plenoptic Sensing

21

european training network on full parallax imaging

Levenberg-Marquardt Algorithm

- Gauss-Newton approximation is not good when away from the minimum in regions where curvature is negative:
 - Better use steepest descent step in such cases.
- Steppest descent can progress slowly when close to the minimum ("zigzagging"):
 - Better use Gauss-Newton step in such cases.
- The Levenberg-Marquardt algorithm provides mechanism for changing between steepest descent and Gauss-Newton steps depending on how good the approximation is locally.

Levenberg-Marquardt Algorithm

Multimedia

• Aim: Find local minimum of NLS problem near initial solution $oldsymbol{x}_0 \in \mathbb{R}^n$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} g(\boldsymbol{x}) \quad \text{with} \quad g(\boldsymbol{x}) = \|\boldsymbol{f}(\boldsymbol{x})\|^2 = \sum_{i=1} f_i(\boldsymbol{x})^2$$

- In each step $k = 0, \ldots, k_{\max}$:
 - Approximate $f(x_k + \Delta x) \approx \underbrace{f(x_k)}_{f_k} + \underbrace{\frac{\partial f(x_k)}{\partial x}}_{I} \Delta x = J_k \Delta x + f_k$
 - Solve $\min_{\Delta \boldsymbol{x} \in \mathbb{R}^n} \| \mathbf{J}_k \Delta \boldsymbol{x} + \boldsymbol{f}_k \|^2$ with damping factor $\mu_k \ge 0$ solution is $\Delta \boldsymbol{x} := -(\mathbf{J}_k^T \mathbf{J}_k + \mu_k \operatorname{diag}(\mathbf{J}_k^T \mathbf{J}_k))^{-1} \mathbf{J}_k^T \boldsymbol{f}_k$
 - Update x for next iteration: $oldsymbol{x}_{k+1} := oldsymbol{x}_k + \Delta oldsymbol{x}$
 - Update μ for next iteration to improve convergence
 - Terminate if $\|\boldsymbol{f}_k\| < \varepsilon_{\mathrm{error}}, \|\Delta \boldsymbol{x}\| < \varepsilon_{\mathrm{param}}$ or $\|\mathbf{J}_k^T \boldsymbol{f}_k\| < \varepsilon_{\mathrm{grad}}$

Institut ///

Constrained Optimization

Consider optimization problem with equality constraint:

- Given is a cost function $g : \mathbb{R}^n \to \mathbb{R}$ and constraint function $h : \mathbb{R}^n \to \mathbb{R}$
- Aim: Find parameters $\boldsymbol{x} \in \mathbb{R}^n$ that minimize g subject to $h(\boldsymbol{x}) = 0$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} g(\boldsymbol{x}) \text{ s.t. } h(\boldsymbol{x}) = 0$$

Solutions:

• Add penalty term to cost function (with heuristic weight μ):

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}g(\boldsymbol{x})+\mu h(\boldsymbol{x})^2$$

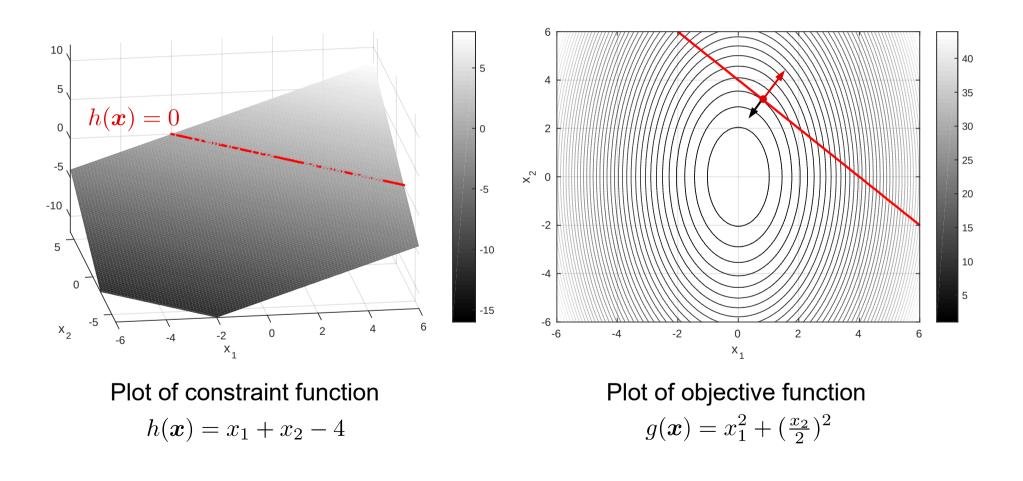
- Pro: Can be solved with default methods, e. g., Levenberg-Marquardt
- **Contra:** Result depends on choice of μ
- Solve with Lagrange multiplier method

Institut /// C A U

Constrained Optimization

Lagrange multiplier:

• Note: Gradient of g is parallel to gradient of h at a constrained minimum



Constrained Optimization

Lagrange multiplier:

- Note: Gradient of g is parallel to gradient of h at a constrained minimum
- This is described by critical points of Lagrange function *L*, *i. e.*, extension of *g* by *h* scaled with an additional parameter λ (Lagrange multiplier):
 L(x, λ) := g(x) λh(x)
- Critical point conditions:

 $\frac{\partial}{\partial \boldsymbol{x}} L(\boldsymbol{x}, \lambda) = \nabla g(\boldsymbol{x}) - \lambda \nabla h(\boldsymbol{x}) = \boldsymbol{0} \quad \rightarrow \text{gradients are parallel}$ $\frac{\partial}{\partial \lambda} L(\boldsymbol{x}, \lambda) = h(\boldsymbol{x}) = \boldsymbol{0} \qquad \qquad \rightarrow \text{constraint is satisfied}$

• Solve $\nabla L(\boldsymbol{x}, \lambda) = \boldsymbol{0}$ to obtain constrained minima of g

Constrained Optimization

Aultimedia

Processing

• Example: Solve underconstrained linear least squares problem for unit length parameter vector *x*:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ s.t. } \|\boldsymbol{x}\|^2 = 1$$

• Lagrange function is:

$$L(\boldsymbol{x}, \lambda) := \boldsymbol{x}^T \mathbf{A}^T \mathbf{A} \boldsymbol{x} - \lambda (\boldsymbol{x}^T \boldsymbol{x} - 1)$$

• Critical point (*i. e.*, constrained minimum of *g*) satisfies:

$$\frac{\partial}{\partial \boldsymbol{x}} L(\boldsymbol{x}, \lambda) = 2\mathbf{A}^T \mathbf{A} \boldsymbol{x} - 2\lambda \boldsymbol{x} = \mathbf{0}$$
$$\Rightarrow \mathbf{A}^T \mathbf{A} \boldsymbol{x} = \lambda \boldsymbol{x}$$

- Solution \boldsymbol{x} is unit length eigenvector of matrix $\mathbf{A}^T \mathbf{A}$
- Can be solved via matrix decomposition (e. g., via SVD)

Optimization Problems in Computer Vision

- Relative pose estimation: Estimate rotation and translation between two cameras from 2D/2D point correspondences
- Absolute pose estimation: Estimate camera rotation and translation from 2D/3D point correspondences
- Absolute orientation: Estimate rotation and translation between two point sets from 3D/3D point correspondences
- Camera calibration: Estimate camera function from 2D/3D point correspondences
- Stereo calibration: Estimate rotation and translation between two cameras from 2D/3D point correspondences
- Stereo reconstruction: Estimate 3D point from 2D projections in two camera images with known stereo calibration