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What do these images tell you about the scene?

∫
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The light field: densely sampled view points

∫
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What if each of these views is actually a light field?

∫
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The light field as a dense collection of views

A 2D horizontal cut (green) is called an epipolar plane image (EPI)

[Wanner and Goldlücke, CVPR 2012 & TPAMI 2014]∫
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Depth estimation on an epipolar plane image (EPI)

Epipolar plane image (EPI)
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Depth estimation on an epipolar plane image (EPI)

Epipolar plane image (EPI)

Orientation estimate (structure tensor)

Depth estimate (slope of orientation)

[Wanner and Goldlücke, CVPR 2012 & TPAMI 2014]∫
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Dense depth via orientation estimation

light field center view estimated depth map (denoised)

[Wanner and Goldluecke CVPR 2012, CVPR 2013, VMV 2013, TPAMI 2014]∫
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When does depth reconstruction fail?

∫
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Unsolved: “non-cooperative” surfaces

Stereo image pair

Triangulation from correspondence

Incorrect assumption: A 3D point looks the same in all views
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Unsolved: “non-cooperative” surfaces

Stereo image pair Stereo reconstruction

Incorrect assumption: A 3D point looks the same in all views
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Dealing with reflections using the light field

light field epipolar plane image closeup

stereo reconstruction

[Wanner and Goldlücke GCPR 2013]∫
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Dealing with reflections using the light field

light field epipolar plane image closeup

stereo reconstruction
Second order structure tensor:

M = Gτ∗

[ I2
xx Ixx Ixy Ixx Iyy

Ixy Ixx I2
xy Ixy Iyy

Iyy Ixx Iyy Ixy I2
yy

]
,

and e1(M) encodes the two
dominant overlaid orientations.

[Wanner and Goldlücke GCPR 2013]∫
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Dealing with reflections using the light field

light field epipolar plane image closeup

stereo reconstruction mirror plane depth

[Wanner and Goldlücke GCPR 2013]∫
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Dealing with reflections using the light field

light field epipolar plane image closeup

stereo reconstruction reflection depth

[Wanner and Goldlücke GCPR 2013]∫
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Works great on carefully recorded data ...

light field center view stereo reconstruction

primary surface depth transmission depth

[Wanner and Goldlücke GCPR 2013]∫
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Sadly, not good enough for plenoptic cameras

fails due to noise, too large disparity range ...∫
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More robust layered depth reconstruction

∫
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Robust layered depth from sparse light field coding

Idea: represent each EPI patch with atoms of fixed disparity,

= α1 + α2 + . . . .

Each light field patch p is assembled from a trained patch dictionary D

by solving the sparse coding problem

argmin
α
‖p − Dα‖2

2 + λ ‖α‖1 .

The coding coefficients α should be related to the depth layers.
[Johannsen, Sulc, Goldluecke CVPR 2016]
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Interpretation of the sparse codes

s

u

u

v

u

αagg
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Classes of aggregated sparse codes

One peak - Lambertian surface
Two peaks - Reflective/Transparent surface
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[Johannsen, Sulc, Goldluecke CVPR 2016]∫
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[Johannsen, Sulc, Goldluecke CVPR 2016]∫
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[Johannsen, Sulc, Goldluecke CVPR 2016]∫
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[Johannsen, Sulc, Goldluecke CVPR 2016]∫
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Light field decomposition

∫
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[Johannsen, Sulc, Goldluecke VMV 2015]∫
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Generative model: generates EPI from center view

Depth-dependent linear relation between center view and EPI:

f = G(du) u,

where
u center view image (at gray pixels),

du center view depth (at gray pixels),
G(du) depth-dependent linear transformation,

f generated complete EPI.

[Johannsen, Sulc, Goldluecke VMV 2015]∫
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Two-layer EPI model

Two-layer EPI synthesis model

G(du)u G(dv )v f

Leads to data fitting cost function

DEPI(u, v) = ‖Gdu u + Gdv v − f ‖2
2

for each individual EPI.

[Johannsen, Sulc, Goldluecke VMV 2015]
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Variational inverse problem for layer decomposition

Dataterm: sum over all horizontal and vertical EPIs

D (u, v) =
W∑

x=1
Dx (ux , vx ) +

H∑
y=1

Dy (uy , vy ) .

Regularization: total generalized variation (TGV2),
favors piecewise linear solutions

J(u, v) = TGV2(u) + TGV2(v).

Total energy:

E (u, v) = D (u, v) + λ J(u, v)

minimize e.g. with primal-dual method [Chambolle and Pock 2010].
[Johannsen, Sulc, Goldluecke VMV 2015]
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[Johannsen, Sulc, Goldluecke VMV 2015]∫
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[Johannsen, Sulc, Goldluecke VMV 2015]∫
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Outlook: intrinsic light field decomposition

Input light field (center view) Specular component

Albedo Shading

[Alperovich and Goldluecke, ACCV 2016]∫
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Outlook: intrinsic light field decomposition

Input light field (center view) Specular component

Albedo Shading

[Alperovich and Goldluecke, ACCV 2016]∫
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Light field camera alignment

∫
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[Johannsen, Sulc, Goldluecke ICCV 2015]∫
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[Johannsen, Sulc, Goldluecke ICCV 2015]∫
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Research questions

How to estimate pose for light field cameras?
How to easily align light fields for panoramas?

sparse correspondence only
tailored to light field geometry
linear algorithm

Input: light field from pre-calibrated plenoptic camera
(i.e. raw image decoded into two-plane parametrization).

∫
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Lytro camera and microlens images

∫
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Lytro camera and microlens images

∫
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How to get to array of views (subaperture images)?

∫
Illustration by Sven Wanner 35 / 58



Light field geometry

X

Y
Z

s t

u
v

r
f

Π

Ω

∫
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What is the projection of a 3D point X into a light field?

A 2D subspace in the 4D ray space, which can be parametrized in 5D
homogenous light field coordinates as follows:

1 0 f
Z 0 − fX

Z

0 1 0 f
Z − fY

Z


︸ ︷︷ ︸

=:M(X,f )


u
v
s
t
1

 = 0.

Note: these are just the projection equations of a pinhole camera located
in (s, t).
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What are correspondences between two light fields?

Ideally, correspondences between subspaces (todo).
In practice, matched features between subaperture images:

{l i}i=1,...n ↔ {l ′j}j=1,...,m.

where l , l ′ are 4D light field coordinates in two different light fields -
i.e. rays.
obtained e.g. from matching SIFT features across all subaperture
images, absurd matches pre-eliminated (if e.g. disparity outside a
sensible range).
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Light field camera pose: strategy I

Obvious observation: a single LF correspondence leads to two
corresponding 3D points.

Trivial strategy for pose estimation: compute 3D points for all LHS
and RHS of a correspondence, align two corresponding 3D point
clouds.

Turns out this is both boring as well as bad.
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Light field camera pose: strategy II

Blackboard time: Plücker ray coordinates and GEC

Generalized epipolar constraint:

q′T Eq + q′T Rm + m′T Rq = 0.

where E = [t]× R is the essential matrix, and the camera coordinate
systems are related by a rotation R and translation t according to

X ′ = RX + t.

Note number of equations: n ·m per correspondence.

∫
40 / 58



Light field camera pose: strategy II
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Linear correspondence constraints in light fields?

∫
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Linear correspondence constraints in light fields?

Observation I: projection from Plücker ray coordinates into homogenous light
field coordinates is projective-linear:

q′
3


u′

v ′

s ′

t ′

1

 =


f 0 0 0 0 0
0 f 0 0 0 0
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 1 0 0 0


[

R 0
E R

] [
q
m

]
.

∫
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Linear correspondence constraints in light fields?

Observation II: Each ray in a correspondence must lie in the subspace of the
correspondence when transformed into the respective other light field.

∫
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Light field camera pose: proposed strategy

Given a correspondence

{l i}i=1,...n ↔ {l ′j}j=1,...,m

estimate subspace matrices M and M ′ for LHS and RHS.

Each ray on the LHS must satisfy

M ′P(f )
[
R 0
E R

] [
q
m

]
= 0.

Abbreviate with M1 the first three and with M2 the second three columns
of the 2× 6 matrix M ′P(f ),

M1Rq + M2Rm + M1Eq = 0.

Same form as GEC, same algorithm to compute solution.
Note: only 2(n + m) equations per correspondence instead of n ·m.
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Numerics

Can be re-arranged to

AE vec(E ) + AR vec(R) = 0.

with matrices E ,R stacked to columns vec(E ), vec(R).

Solution for vec(R) s.t. ‖vec(R)‖ = 1 satisfies

(AE A+
E − I)AR vec(R) = 0.

Solve using SVD, project to SO(3) to obtain linear estimate for R.

Linear estimate for t follows from substituting solution for R into above
equation.
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Non-linear refinement

In theory, solution is subject to difficult non-linear constraints:
R must be a rotation,
E = [t]× R,

so it is not expected that the linear estimate is sufficient.

Previous work: “iterative refinement”, solve for R and t in turn,
backproject to allowed space of solutions.

In practice, not necessary if solving for R first instead of E .
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Focal length

Can be done by brute force search, just look for f which minimizes
residual in the linear system - not elegant, but works. Full non-linear
bundle adjustment as a second step of course possible as well.

∫
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Light field camera pose: comparison

Correspondences 10 matches, 10 projections per point 20 matches, 10 projections per point 10 matches, 20 projections per point

Noise level σuv 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

A
ng

ul
ar

ro
t.

er
ro

r
[d

eg
] linear methods

3DPC 1.82 5.19 8.93 11.56 16.18 1.33 3.42 6.77 8.38 10.24 1.15 4.35 6.43 9.14 14.12
R2R-O 2.04 11.17 15.37 37.48 43.32 0.72 2.19 3.48 3.76 6.41 1.87 3.01 17.56 39.66 40.02
R2R-I 0.88 1.91 3.51 4.55 5.19 0.40 0.92 2.13 2.76 4.01 0.55 1.40 2.64 4.20 5.98
Proposed 0.65 1.19 1.80 2.28 3.15 0.27 0.52 0.83 1.11 1.49 0.40 0.81 1.27 1.77 2.39

with refinement
R2R-O-R20 1.00 2.05 3.71 4.53 18.40 0.43 0.90 2.31 2.94 4.10 0.62 1.45 9.27 7.86 9.33
R2R-I-R20 1.00 2.18 3.83 4.73 5.21 0.43 0.91 2.32 2.95 4.11 0.64 1.50 2.74 4.45 6.08
Proposed-R20 0.69 1.20 1.77 2.23 2.85 0.26 0.50 0.79 1.05 1.42 0.37 0.80 1.18 1.57 2.39

Re
la

tiv
e

tr
an

sl.
er

ro
r

[%
] linear methods

3DPC 0.28 0.82 0.93 2.19 2.20 0.32 0.97 0.92 1.44 0.95 0.46 0.84 1.21 0.74 0.86
R2R-O 0.20 1.15 1.06 4.18 2.01 0.05 0.43 0.30 0.36 0.45 1.68 0.27 1.43 0.98 0.79
R2R-I 0.04 0.12 0.23 0.46 0.52 0.02 0.09 0.14 0.25 0.36 0.12 0.11 0.27 0.24 0.33
Proposed 0.03 0.07 0.15 0.25 0.24 0.01 0.05 0.07 0.11 0.14 0.13 0.06 0.16 0.10 0.12

with refinement
R2R-O-R20 0.05 0.13 0.24 0.51 0.67 0.02 0.09 0.15 0.25 0.36 0.12 0.11 0.41 0.27 0.37
R2R-I-R20 0.04 0.13 0.24 0.51 0.51 0.02 0.09 0.15 0.25 0.36 0.12 0.11 0.27 0.25 0.33
Proposed-R20 0.03 0.08 0.14 0.26 0.23 0.01 0.05 0.07 0.11 0.14 0.11 0.06 0.16 0.10 0.13

Accuracy of the different methods both before and after non-linear refinement. Different numbers
of correspondences N, projections per correspondence K , and levels of noise σuv on the
(u, v)-coordinates are compared. Error metrics are the angular deviation from the ground truth in
degrees for the estimated rotation, as well as the relative translation error measured as a
percentage of the length of the ground truth translation vector. Noise standard deviation is given
in units of pixels on the subaperture images. In all cases, the most accurate method (highlighted in
bold) is the one proposed in this paper.∫
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Accuracy over number of corresponding rays

The graphs show how the angular error in rotation depends on the number of matches (left) and
the number of rays per match (right). Compared are the four linear methods in table ??: 3DPC [?]
(red) and R2R-O [?] (cyan), R2R-I with our proposed numerical improvements (blue), and finally
the novel proposed method for 4D light fields (green). Top row: small amount of noise (σ = 0.2),
bottom: large amount of noise (σ = 1.0).∫
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Living panoramas

∫
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Living panoramas

∫
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3D point cloud

∫
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Conclusions

Simple linear method to estimate pose for light fields
in the two-plane parametrization.

More accurate than all previous methods, reduced number of
equations compared to framework of generalized cameras.

Allows simple construction of refocusable light field panoramas, but
there’s work left to do for high quality.

∫
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Putting it all together - full scene reconstruction

∫
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Let’s go back to our challenge dataset

∫
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Light field alignment and bundle adjustment

∫
54 / 58



Two-layered depth map estimation

Center view 14 / 24 Depth second layer

∫
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Input

reconstruction ground truth

∫
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Summary

∫
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Sparse light field coding for multi-layer depth
[Johannsen, Sulc, Goldluecke CVPR 2016, GCPR 2016]

Light field decomposition and intrinsic light fields
[Johannsen, Sulc, Goldluecke VMV 2015,
Alperovich and Goldluecke (submitted to ACCV 2016)]

Light field alignment and refocusable panoramas
[Johannsen, Sulc, Goldluecke ICCV 2015]

Multi-layered 3D scene reconstruction
[Johannsen, Sulc, Marniok, Goldluecke (submitted)]∫
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