LIGHT FIELD CAPTURE FOR MEDIA PRODUCTION

Joachim Keinert, Fraunhofer IIS

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Capture challenge
- Sparse-to-dense light field conversion
 - Setup of array
 - Real-time disparity estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture
- The rendering challenge
- Example light fields

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Multi-camera: problem definition
- Sparse-to-dense light field conversion
 - Setup of array
 - Real-time disparity estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture
- The rendering challenge
- Example light fields

Coming Home – A test production

Coming Home – Some impressions from the shot Scene overview

Coming Home – Some impressions from the shot Many people involved

Coming Home – Some impressions from the shot Many people involved

Coming Home – Some impressions from the shot Camera setup

Coming Home – Some impressions from the shot Camera movement

Coming Home – Some impressions from the shot Camera movement

Coming Home – Some impressions from the shot Scene setup ...

Coming Home – Some impressions from the shot ... and focus pulling

Coming Home – Some impressions from the shot ... and focus pulling

Coming Home – Some impressions from the shot ...and focus pulling

Coming Home – Some impressions from the shot The challenge of lighting

Coming Home – Some impressions from the shot Many tricks

Coming Home – Some impressions from the shot Many tricks

Coming Home – Some impressions from the shot Many tricks

Coming home – Making off

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Capture challenge
- Sparse-to-dense light field conversion
 - Setup of array
 - Real-time disparity estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture
- The rendering challenge
- Example light fields

Definition of light field

- Intensity of all light rays in space
- 7D function $P_f(x, y, z, \theta, \phi, \lambda, t)$
 - spatial position (x, y, z)
 - viewing direction (θ, ϕ)
 - wavelength (λ)
 - time (t)
- Highly redundant when ignoring
 - Attenuation
 - **Occulusions**

4D light field Looking like through a window ...

Goal: Capture large scale parallax

Possible applications

26

© Fraunhofer, Joachim Keinert

Multi-camera capture **Problem formulation**

- Sampling a 4D light field theoretically requires infinitely many cameras
- In practice, only a sparse sampling is possible
- Need to interpolate missing images
- Availability of depth permits determine origin of ray for correct interpolation

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Multi-camera: problem definition
- Sparse-to-dense light field conversion
 - Setup of array
 - Real-time disparity estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture
- The rendering challenge
- Example light fields

Disparity and depth

Dimensioning the array system

Computation of disparity requires determination of correspondences

- Pixel based correspondences not possible
 - Ambiguous
 - Noise
- Correspondences are determined based on pixel regions

Dimensioning the array system

- Correspondences are determined based on pixel regions
- Disparity from the most similar search window
- Ideally, within the search window only limited depth variations
 - Otherwise disparity for pixels within window different
 - Windows are not similar anymore

Dimensioning the array system

- Ideally, within the search window only limited depth variations
- Most critical is a window that contains both
 - Objects from the very front of the scene
 - Objects from the very back of the scene
- Disparity change (parallax):

$$\Delta \mathbf{d} = \frac{f \cdot r}{s} \cdot \left(\frac{1}{g_1} - \frac{1}{g_2}\right)$$

Rule of thumb

- $\Delta d = 0.03 \cdot w$
- w: Number of horizontal pixels

Condition on far point for given near point f=50mm, s=5µm, r=6cm, w=2048

Near point for far point at infinity f=50mm, s=5µm, w=2048

$$0.03 \cdot w = \Delta d = \frac{f \cdot r}{s} \cdot \left(\frac{1}{g_1} - \frac{1}{g_2}\right)$$

$$g_2 \to \infty$$

$$g_1 = \frac{f \cdot r}{s \cdot 0.03 \cdot w}$$

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Multi-camera: problem definition
- Sparse-to-dense light field conversion
 - Setup of array
 - **Real-time disparity** estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture
- The rendering challenge
- Example light fields

Multi resolution approach

Gaussian kernel

Search only small number of disparities

> max planck institut informatik

Pipeline Overview (1)

Rectification Capture

Matching

Per view result 38

Pipeline Overview (2)

Consolidation

Per view result

Upsampling

Census Transform

Illumination invariant

- Encodes local brightness changes into a single integer variable
 - Every bit corresponds to a window position
- Applied census transform size is 5x5

Census transform

127	127	129
126	Х	129
127	131	131

$$X \ge Y \qquad \qquad \qquad X = 128$$

Multi-camera matching

Relation between disparity d^s and depth g (when sensor centred in optical axis)

$$d^s \approx \frac{1}{g} \cdot f \cdot r$$

Disparity between different camera pairs proportional to base line

max planck institut

informatik

Multi-camera cost computation

- Costs for a single camera pair
 - Number of different bits in the census transform output
- Costs for multiple camera pairs
 - Mean of all single camera pair costs
- Computation of disparity
 - Those disparity that have minimum costs

Census transform

$$X \ge Y \qquad \qquad X = 128$$

Matching confidence

How sure is decision for view *i* ?

$$\overline{C}_i(\vec{x}) = 1 - \frac{1}{1 + \sigma_m \cdot h_i(\vec{x})}$$

• $h_i = |average \ cost(tested \ disparities) - best \ cost|^{1/2}$

🗾 Fraunhofer max planck institut

informatik

44

IIS

Consolidation of different views

- Disparity maps of different views might contradict
 - noise
 - occlusions
 - **Specularities**
- Contradicting disparities should have low confidence

Consolidation of different views Principle

- Disparity $\overline{D_i}(\vec{x})$ obtained for view *i*
- Disparity $\overline{D_j}(\vec{x})$ obtained for view j

Consolidation of different views Computation of overall confidence

Input

- Matching confidence per view *i*: $\overline{C}_i(\vec{x}) = 1 \frac{1}{1 + \sigma_m \cdot h_i(\vec{x})}$
- Disparity $\overline{D_i}(\vec{x})$ obtained for view *i*
- Consolidated confidence for view *i* at pixel \vec{x}

$$C_i(\vec{x}) = \sum_{i_2} \hat{C}_{i,i_2}(\vec{x})$$

Confidence of view *i* relative to view i_2 (for equidistant cameras)

$$\hat{C}_{i,i_2}(\vec{x}) = \frac{\overline{C}_i\left(\vec{x'}\right)}{1 + \sigma_r \cdot \left| \overline{D_i}(\vec{x}) - \overline{D_{i_2}}\left(\vec{x'}\right) \right|}, \vec{x'} = \vec{x} + \overline{D_i}(\vec{x})$$

informatik

Consolidation of different views Computation of overall confidence

Confidence of view *i* relative to view *i*₂

$$\hat{C}_{i,i_{2}}(\vec{x}) = \frac{\overline{C}_{i}\left(\vec{x'}\right)}{1 + \sigma_{r} \cdot \underbrace{\left|\overline{D}_{i}(\vec{x}) - \overline{D}_{i_{2}}\left(\vec{x'}\right)\right|}_{reprojection\ error}}$$

No reprojection error

- Neighbour view i₂ confirms "hypothesis" of view i
- Increase confidence term
- Large reprojection error
 - Neighbour view i₂ does not confirm "hypothesis" of view i
 - Do not increase confidence term
- By these means wrong disparity values will obtain low confidence values

Consolidation of different views Disparity combination from different views

Consolidated disparity for view *i* at pixel \vec{x}

$$D_i(\vec{x}) = \sum_{i_2} \left(\overline{D_{i_2}}\left(\vec{x'}\right) \cdot \frac{\hat{C}_{i,i_2}(\vec{x})}{C_i(\vec{x})} \right), \vec{x'} = \vec{x} + \overline{D_i}(\vec{x})$$

- Improve disparities that are slightly off due to noise (low confidence!)
- Will not help for disparities that are wrong anyhow

Search space reduction by multi-resolution approach

Upsampling

 $D_i^{(j)}$

Edge aware upsampling

- What disparities should be taken to the next level?
 - High resolution target pixel x
 - Low resolution source pixel y

$$D_{i}^{(j)}(x) = \frac{1}{Z} \cdot \sum_{y \in N_{i}(x)} w(x, y) \cdot D_{i}^{(j)}(y)$$
$$w(x, y) = C_{i}^{(j)}(y) w_{s}(x, y) w_{a}(x, y)$$
$$w_{a}(x, y)$$
Confidence

Dense light field results

SGM

CVF

Wang

max planck institut informatik

Our method 55

Sparse light field results

Depth based view synthesis

Light Field Media Production

TABLE OF CONTENT

- An insight into movie production
- Multi-camera light field capture
 - Definition of light field
 - Multi-camera: problem definition
- Sparse-to-dense light field conversion
 - Setup of array
 - Real-time disparity estimation

- Image quality factors
 - Model of a digital camera
 - Noise, sensitivity, depth of field
 - Dynamic range
 - Camera comparison
 - Challenges in light field capture

k institut

The rendering challenge

informatik

Example light fields

What are the properties of a high quality camera?

- Low noise
- High dynamic range
- High colour fidelity
- No geometric distortions
- No artefacts
 - Rolling shutter artefacts
 - Defect pixels
 - Blooming
 - . . .

What are the properties of a high quality camera? Low noise

What are the properties of a high quality camera? **Dynamic range**

Low dynamic range capture

High dynamic range capture

What are the properties of a high quality camera? **Dynamic range**

Bright objects

few many photons photons large large difficult bucket bucket to count

Dark objects

Model of a digital camera for systematic analysis

- μ_p: Mean number of photons hitting area A of single pixel during exposure time
 - μ_e : Mean number of generated electric charges
- $\blacksquare \quad \mu_e = \eta(\lambda) \cdot \mu_p$
 - Quantum efficiency

Model of a digital camera for systematic analysis

Signal to noise ratio
$$SNR = \frac{\mu_y - \mu_{y,dark}}{\sigma_y}$$

- Dark current $\mu_{y,dark} = \mu_d \cdot K$
- In the following: $\mu_{y,dark} \approx 0$

Model of a digital camera Noise sources

- Electronic noise σ_d^2
 - Transistors
 - Thermal noise
- Quantization noise σ_q^2
 - Signal dependent!
- Photon noise (shot noise) σ_e^2

Statistically independent noise sources $\sigma_v = K^2 \cdot (\sigma_d^2 + \sigma_e^2) + \sigma_a^2$

Model of a digital camera Quantization noise

$$\sigma_q^2 = E\left[\left(X - E(X)\right)^2\right]$$

Consider first quantization bin

 $\blacksquare \quad E(X) \approx \frac{1}{2}DN$

Quantization noise

$$\sigma_q^2 \approx \frac{1}{DN} \cdot \int_0^{DN} \left(x - \frac{1}{2} DN \right)^2 dx$$

$$= \frac{1}{DN} \cdot \frac{1}{3} \cdot \left[\left(x - \frac{1}{2} DN \right)^3 \right]_0^{DN}$$

$$= \frac{1}{12} DN^2$$

Same for other quantization bins

Model of a digital camera Photon shot noise

- Shot noise occurs in photon counting in optical devices
- Poisson process $\sigma_e^2 = \mu_e$

Signal to noise ratio

Quality considerations

In good modern digital cameras, noise is dominated by photon shot noise

Only at the very lowest signal levels, electronic noise becomes a factor

$$SNR \approx \begin{cases} \sqrt{\eta \cdot \mu_p} & \eta \cdot \mu_p \gg \sigma_d^2 + \frac{\sigma_q^2}{K^2} \\ \frac{\eta \cdot \mu_p}{\sqrt{\sigma_d^2 + \frac{\sigma_q^2}{K^2}}} & \eta \cdot \mu_p \ll \sigma_d^2 + \frac{\sigma_q^2}{K^2} \end{cases}$$
$$SNR \approx \sqrt{\eta \cdot \mu_p}$$

- Good image quality (low SNR) requires a lot of photons!
- Solution: larger sensor?

Relation with optics Small sensor

Relation with optics Increasing sensor size

- Larger pixels would capture more photons
- Consequences
 - Resolution gets smaller
 - Field of view changes

HOCHSCHULE DER MEDIEN

🗾 Fraunhofer

Relation with optics Large sensor with same resolution and image section

Reminder: lens equations

Scaling a camera

- Scale pixel extension by *s*
 - Area is scaled by s²
- B needs to be scaled by s
 (same number of image pixels)
- $\frac{B}{b} = \frac{G}{g} \Rightarrow$ b needs to be scaled by s
- $\blacksquare \quad \frac{1}{f} = \frac{1}{g} + \frac{1}{b \cdot s}$
- $\blacksquare \quad \frac{1}{f} = \frac{1}{s} \cdot \left(\frac{1}{g} + \frac{1}{b}\right) + \frac{1 \frac{1}{s}}{g}$
 - If $f \ll g$, f needs to be scaled by s

Scaling a camera Impact on the optics

- F-number of lens: $k = \frac{f}{D}$ (D: aperture diameter)
 - Determines cost (and depth of field)
- Same F-number
 - D scales with s
 - Aperture area scales by s²

- Problematic for light field capture
- Number of arriving photons is scaled by s² (for constant radiance)
- Larger pixels permit larger apertures
 - More photons per pixel
- Its only due to the combination with the lens, why larger pixels can deliver better SNR
- If D is kept constant, the number of photons hitting a pixel is constant! 76

Depth of field Hyperfocal distance

Finite object distance, such that objects with infinite distance have acceptable unsharpness

$$h = f + \frac{f^2}{k \cdot Z}$$

- *f*: focal length
- *k*: f-number
- Z: circle of confusion

Depth of field Hyperfocal distance

- Scaling the pixel size with s
 - \succ Z can also be scaled with s

 $\bullet \quad h = f + \frac{f^2}{k \cdot Z}$

- For constant k, h scales with s
- Larger pixel sizes increase h
 - > Depth of field gets smaller

Depth of field What happens for constant aperture size

- $\bullet \quad h = f + \frac{f^2}{k \cdot Z}$
 - f: focal length
 - k: f-number
 - Z: circle of confusion
- When scaling the pixel size with s, Z can also be scaled with s

- Z scales with s
- For constant aperture size
 - $k = \frac{f}{D}$ scales with s
- In typical setups, $f \ll \frac{f^2}{k \cdot Z}$
- $h \approx \frac{f^2}{k \cdot Z}$ is approximately constant
- Depth of field is almost constant

Conclusions on sensor size

- Cameras with larger sensor sizes can deliver the same image as a camera with smaller sensor
- Theoretically the same image quality
 - Requires equivalent sensor quality
 - Requires special tricks (see later)
- A camera with a larger sensor can operate with larger apertures sizes
 - Collects more photons in dark conditions
 - Not possible for small sensors
- Advantage of typical DSLR cameras
- Contradicts requirements of lightfields having a good depth of field

Large sensor sizes for lightfield capture

Are large sensor sizes useless for lightfield capture?

Not quite. They help for dynamic range.

Definition of dynamic range Sensitivity threshold

Sensitivity threshold: SNR = 1
SNR
$$\approx \frac{\eta \cdot \mu_p}{\sqrt{(\sigma_d^2 + \eta \cdot \mu_p) + \frac{\sigma_q^2}{K^2}}} = 1$$
 $\eta \cdot \mu_p = \sqrt{(\sigma_d^2 + \eta \cdot \mu_p) + \frac{\sigma_q^2}{K^2}}$
 $\eta^2 \cdot \mu_p^2 - \eta \cdot \mu_p - (\sigma_d^2 + \frac{\sigma_q^2}{K^2}) = 0$
 $\mu_p = \frac{\eta \pm \sqrt{\eta^2 + 4\eta^2 (\sigma_d^2 + \frac{\sigma_q^2}{K^2})}}{2\eta^2}$

$$\mu_p = \frac{1}{2\eta} \cdot \left(1 + \sqrt{1 + 4\left(\sigma_d^2 + \frac{\sigma_q^2}{K^2}\right)} \right)$$
$$\mu_p \approx \frac{1}{2\eta} \cdot (1 + 2\sigma_d)$$

Definition of dynamic range Saturation capacity

Bernd Jähne, Was man über Bildsensoren wissen muss, um damit messen zu können, 58. Heidelberger Bildverarbeitungsforum

© Fraunhofer, Joachim Keinert

Model of a digital camera Dynamic range

Model of a digital camera Building sensors with large dynamic range

- Upper bound determined by saturation capacity
 - Large full well capacity

 $\mu_{p,sens} =$ $\frac{1}{2\eta} \cdot \left(1 + \sqrt{1 + 4\left(\sigma_d^2 + \frac{\sigma_q^2}{K^2}\right)}\right)$

- Lower bound determined by noise and quantum efficiency η
 - Good electronics design

Challenge:

Collect few photons in large bucket

few photons

large

Model of a digital camera Pixel cell (3 transistor)

http://commons.wikimedia.org/wiki/File:Aps_pd_pixel_schematic.sv

- 1. Reset photo diode by applying positive voltage to RST
 - Capacitor in photo diode will be charged
- 2. Release reset
 - Exposure takes place
 - Light makes photo diode conductive
 - Charges in capacitor are reduced
- 3. Row read-out
 - *M_{sf}* acts as a resistor

Capacitors

 $C = \frac{Q}{U}$

Voltage U is limited due to small dimensions of semiconductor structures

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

- ϵ_0 : physical constant
- ϵ_r : material dependent
- d: Cannot be arbitrarily small
 - $E = \frac{U}{d}$ cannot exceed threshold
- A primarily determines capacity₈₇

Model of a digital camera Building sensors with large dynamic range

Ting Chen, Peter Catrysse, Abbas El Gamal and Brian Wandell

How Small Should Pixel Size Be?

Image quality factors

Large pixel sizes allow for high dynamic range

- Large full well capacity
- Requires very good read-out electronic to exploit (not further discussed in this presentation)
- Large pixel sizes can improve the SNR
 - Important for low-light conditions
 - Needs corresponding high quality lenses with larger apertures
 - Reduces depth of field
 - For same depth of field, SNR is almost the same than for smaller pixel sizes
 - Requires very good read-out electronic, since due to larger capacity, voltage change is smaller!!!

Professional Video Cameras ARRI Alexa SXT

Sensor size	35 mm
Shutter	Rolling (+mechanical)
Dynamic range	14+ stops
Bit depth processing pipeline	16 bits
Frame rates	0.75-120 fps
Weight (body)	6.5 kg
Length	32.1 cm
Width	16.6 cm
Height	15.8 cm

Professional Video Cameras ARRI Alexa Mini

Sensor size	35 mm
Resolution	3422x2202
Pixel size	8.25 x 8.25 µm
Shutter	Rolling
Dynamic range	14+ stops
Frame rates	0.75 - 200
Weight (body)	2.3 kg
Length	18.5 cm
Width	12.5 cm
Height	14 cm

Professional Video Cameras Sony F65

Sensor size	35 mm
Pixels	20M
Shutter	Rolling (+mechanical)
Dynamic range	14 stops
Bit depth processing pipeline	16 bit
Frame rates	Up to 120 fps
Weight (body)	5-6.5 kg

Camera arrays used for light field capture Industrial cameras (Basler)

Sensor size	11.26 x 5.98 mm
Resolution	2046 x 1086
Pixel size	5.5 x 5.5 µm
Shutter	Global
Dynamic range	56.5 dB
Frame rates	Up to 50 fps
Weight (body)	90 g
Length	4.2 cm
Width	2.9 cm
Height	2.9 cm

Camera Arrays used for light field capture Consumer cameras (GoPro)

Sensor size	5.37 x 4.04mm
Resolution	1920 x 1080
Pixel size	Ca. 3 µm
Shutter	Rolling
Dynamic range	
Frame rates	60 fps
Weight (body)	
Length	
Width	
Height	

Camera Arrays used for light field capture Broadcast cameras (Blackmagic Studio)

Sensor size	13.06 x 7.344mm
Resolution	3840 x 2160
Pixel size	Ca. 3 µm
Shutter	Rolling/global
Dynamic range	11 f-stops
Frame rates	60 fps
Weight (body)	304g
Length	69.5mm
Width	82.5mm
Height	65.4mm

Challenges in light field capture

Larger pixel sizes lead to better dynamic range

- For good performance in low light conditions (large SNR), large aperture sizes are required
- Professional video cameras go for this option
- Light field algorithms require large depth of field
 - Aperture diameters need to be limited
 - Inherent challenge for low light captures