Perceptual Display: Towards Reducing Gaps Between Real World and Displayed Scenes

Karol Myszkowski

Modern Displays

Bigger & brighter

More resolution

Higher refresh rates

3D

Display Qualities and Human Perception

- Capabilities of displays are limited:
 - Contrast
 - Brightness
 - Temporal resolution
 - Spatial resolution
 - Depth processing in Stereo 3D
- Idea: take advantage of the visual system properties to improve apparent qualities

Cornsweet Illusion

Usage Examples From Art

G. Belúratur Blattoreres witt Asbuiettesflies

Cornsweet Profiles in Object Space

Unsharp Masking, Countershading and Haloes: Enhancements or Artifacts?

Matthew Trentacoste Rafal Mantiuk Wolfgang Heidrich Florian Dufrot

University of British Columbia Bangor University

- Same countershading operation is perceived differently, depending on parameter choice
- Some parameters increase sharpness or contrast
- But other choices can introduce haloes

Sharpeness

Contrast

Haloes

Model of acceptable countershading

Objectionable countershading (halos)

Matthew Trentacoste Rafal Mantiuk Wolfgang Heidrich Florian Dufrot

University of British Columbia Bangor University

Indistinguishable countershading

Glowing Effect

[Zavagno and Caputo 2001]

Glare Illusion in Different Media

Photography

Arts

Computer Games

Glare Illusion: Brightness Boost

Glare Illusion in Games

• Kawase, Practical Implementation of High Dynamic Range Rendering, Game Developer's Conference 2004

Light Scattering Modeling: Convolution vs. Billboard

Convolution

Billboard

Reality

Display

HVS

Observations: Bigger & Higher Resolution

- More pixels to render
 - 8k and 4k UHD
- People move closer
 - Higher angular and pixel velocity
 - More perceived **blur** due to smooth pursuit eye motion

40 Hz rendering

[Didyk et al. 2010]

- Compensation may lead to clipping problems
- Distorted regions must always be blurred

- Interleave blurred and sharp (with doubled high-pass frequencies) frames
 - Hold effect reduced as high frequencies displayed shorter and low frequencies do not matter for blur

[Didyk et al. 2010]

Frame Rates in Films

- Regular films: 24 fps
- Emerging trend: higher frame rates (48 fps or more)
- Completely different appearance

HFR Pros and Cons

- Less artifacs, such as flicker and blur | objectively better quality
- So-called *soap-opera look* | subjectively worse quality

FPS

Frame Rate Selection

- Look-quality balance
- Story-telling purposes

Quesnel et al., 2013 An exploration into the creation of variable frame rate (VFR) stereoscopic 3D narrative productions

Disney Research, 2015 Lucid Dreams of Gabriel

Idea – More Artistic Freedom

- In-between frame rate (eg., 36 FPS)
- Frame rate that changes over time
- Different frame rates in different image regions

Luminance of a single pixel Problem in the scene over time Signal S(t) 48 fps sampling time 48 fps display #frame Δ

Real World vs. Displayed Stimuli

Flickering Region Control by Frame Shifting

Calibration Experiment

displacement

shutter 0.5

- 256 px/s
- 512 px/s
- 1024 px/s

Standard solution

continuous

Variable

(Less smooth)

48 FPS

Spatial Resolution

 Density of cones in the fovea per pixel of 22-inch Full-HD display observed from the distance 50cm for three different persons

[Didyk et al. 2010]

Many High-Resolution Sources

Display content?

Apparent Resolution Enhancement

increased apparent resolution

Temporal Domain – Static Case

Temporal Domain – Dynamic Case

 w_i weights proportional to the length of the segment

pixel in segment iintensity of pixel x in segment i

I(x,i)

Receptor Layout

Prediction in Equations

Prediction in Equations

Optimization Problem

Optimization Result

Display

Predicted image on the retina

integration

TWO HOUSEHOLDS, BOTH ALIKE IN DIGNI HUTINY, WHERE CIVIL BLOOD MAKES CIVIL STAR.CROSS'D LOVERS TAKE THEIR LIFE: WH PARENTS' STRIFE. THE FEARFUL PASSAGE OF BUT THEIR CHILDREN'S END, NOUGHT COULD PATIENT EARS ATTEND, WHAT HERE SHALL M VERONA, WHERE WE LAY OUR SCENE, FROM UNCLEAN. FROM FORTH THE FATAL LOINS OF MISADVENTURED PITEOUS OVERTHROWS DO DEATH-MARK'D LOVE, AND THE CONTINUANCI IS NOW THE TWO HOURS' TRAFFIC OF OUR S SHALL STRIVE TO MEND.TWO HOUSEHOLDS. GRUDGE BREAK TO NEW MUTINY, WHERE CIV FOES A PAIR OF STAR-CROSS'D LOVERS TAK THEIR PARENTS' STRIFE, THE FEARFUL PASS WHICH, BUT THEIR CHILDREN'S END, NOUGHT WITH PATIENT EARS ATTEND, WHAT HERE SH FAIR VERONA, WHERE WE LAY OUR SCENE, FI UNCLEAN FROM FORTH THE FATAL LOINS OF

[Didyk et al. 2010]

Critical Flicker Frequency

Fusion frequency depends on:

- Temporal contrast
- Spatial extent

Critical Flicker Frequency – Hecht and Smith's data from Brown J.L. *Flicker and Intermittent Simulation*

40 Hz signal

Three-frame cycle on 120 Hz display

Depth Perception

We see depth due to depth cues.

Stereoscopic depth cues:

binocular disparity

Ocular depth cues: accommodation, vergence

Pictorial depth cues:

occlusion, size, shadows...

Reproducible on a flat displays

Require 3D space

We cheat our Human Visual System!

Stereo 3D: Binocular Disparity

Depth Manipulation

Viewing discoulation Viewing comfort

Depth Manipulation

- Linear
- Logarithmic
- Content dependent ٠

Other possibilities:

- Gradient domain
- Local operators •

Modified pixel disparity

"Nonlinear Disparity Mapping for Stereoscopic 3D" [Lang et al. 2010]

Depth Manipulation

Disparity Perception

Disparity Perception

Detection Threshold

Detection Threshold

"Sensitivity to horizontal and vertical corrugations defined by binocular disparity" [Bradshaw et al. 1999] "Spatial organization of binocular disparity sensitivity" [Tyler 1975]

Spatial Frequency (c/deg)

1

Detection Threshold

Disparity and luminance perception follows similar mechanisms

"Seeing in depth" by Howard and Rogers 2002

Discrimination Threshold

Discrimination Threshold

Disparity Perception

Sensitivity to depth changes depends on:

- Spatial frequency of disparity corrugation
- Existing disparity (sinusoid amplitude)

Measurements

Thresholds measurement:

- Two sinusoidal corrugations
- Which has more depth? (left/right)
- Amplitude adjustment (PEST with 2AFC)
- 12 participants \rightarrow 300+ samples

Model

3. Fit analytic function

* one transducer per frequency

Perceptual Model

Disparity Metric

Personalization

Disparity perception depends on:

"A perceptual model for disparity" by Didyk et al. 2011

Personalization

All users perceive the same regardless:

- Equipment
- Disparity sensitivity

Backward-compatible Stereo

Back Sutable leader of Satta leaders and the second s

Cornsweet Illusion

- Similar perceived contrast
- Luminance range reduced

Cornsweet illusion works for depth:

"A Craik-O'Brien-Cornsweet illusion for visual depth" by Anstis et al. 1997

Reflections and Refractions in S3D

correct highlights

binocular conflicts

correct highlights

binocular conflicts

see: **G. Wendt et al., 2008** Highlight disparity contributes to the authenticity and strength of perceived glossiness

our goal

no conflicts + glossy look

see: E. A. Khan et al., 2006 Image-based Material Editing

see: **T. Ritschel et al., 2009** Interactive Reflection Editing

see: A. Blake and H. Bülthoff, 1990 Does the brain know the physics of specular reflection?

specular par **CI EXAMPLE CONTRACTOR OF CONTA**

diffuse part

diffuse part

left-eye image

right-eye image

Physical

Optimizing Eye Vergence – Film (

Cut in a Regular Film

Shot 1

Shot 2

Cut

Source: Big Buck Bunny CC-BY Blender Foundation, Janus B. Kristensen

Saccades

2D Display

Cut in a Stereoscopic 3D Film

Left eye

Right eye

Shot 1

Shot 2

Cut

Vergence

3D Display

Vergence vs. Film Editing

3D cAnte range control le legigit

We want fast-paced editing

Vergence is slow

Eye-tracking Experiment

3D display w/ shutter glasses

Stimulus

Binocular eye-tracker

Chin-rest (distance 55cm)

Eye-tracking Experiment

Subject

Vergence Response

Vergence Curve

Response Averaging

Response Averaging

Adaptation Time Extraction

Experiment

Properties of the Model

Properties of the Model

Properties of the Model

Cut Optimization

Cut Optimization

Cut Optimization

Observer

Left camera Right camera

Shot 1

Gaze-driven Disparity Remapping

Dedicated HW

Computer vision

[1] custom [2] Krafka K., Khosla A. etal., 2016, *Eye Tracking for Everyone, CVPR*

FOVE https://flic.kr/p/oSBK9D

SMI (SensoMotoric Instruments)

https://flic.kr/p/pNPYrc

M. Stengel, S. Grogorick, M. Eisemann, E. Eisemann and M. Magnor

Non-obscuring binocular eye tracking for wide field-of-view head-mounted-displays 2015 IEEE Virtual Reality (VR), Arles, 2015, pp. 357-358.

Disparity perception

Replotted from Figure 3 of Simon J.D Prince, Brian J Rogers

Sensitivity to disparity corrugations in peripheral vision, Vision Research, Volume 38, Issue 17, September 1998

axis Vertical Depth axis

Original

0

Original

[Butler et al., 2012, A naturalistic open source movie for optical flow evaluation.]

Depth

k.

Original

Building target curver

Screen disparity

Per-frame mapping curve construction

[Butler et al., 2012, A naturalistic open source movie for optical flow evaluation.]

Per-frame remapping

Our optimized mapping

City flight

Linear remapping

Compression for autostereoscopic displays

Conclusions

- Modeling perception can help in improving apparent image quality
 - Spatial and temporal resolution
 - Perceived depth
- Typically we aim for the impression of realism
 - Physical simulation is not always the best specular effects
- Certain cinematographic effects might require different treatment
 - Scene cuts eye vergence slower than saccades
 - High refresh rate smoother motion, but "soap opera" look
- Eye tracking a powerful tool in exploring human perception
 - Better disparity budget reallocation that improves both visual comfort and enhances perceived depth
- There are many interactions of disparity with image content and other depth cues
 - Motion parallax enables disparity budget reallocation

TOWARDS A NEW QUALITY METRIC FOR DENSE LIGHT FIELDS

V.K.Adhikarla, M.Vinkler, D.Sumin, R.Mantiuk, K.Myszkowski, P.Didyk and H.-P. Seidel IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 21-26 July 2017.

Goal

Application Scenarios

LF database

Distortions

Bikes Distortion level: *k* = 2

Distortions

Barcelona Distortion level: *skip* = 1

Subjective study

Subjective scaling

Predicting subjective scores

Metric Performance

Predicting subjective scores

Conclusions

- We need metrics that are tuned to light field specific artifacts
- 2D metrics to a certain extent address the quality issue, but need dense light fields as reference. In many cases, this not a possibility
- A more relevant metric for light fields must provide the quality when there is no reference at all
- Learning based approaches must be explored with good training data to see the usefulness of such approaches

Collaborators

Rafal Mantiuk

Tobias Ritschel

Krzysztof Templin

Tunç Aydın

Martin Čadík

Vamsi Kiran Adhikarla

Grzegorz Krawczyk

Elmar Eisemann

Dawid Pająk

Piotr Didyk

Petr Kellnhofer

Yulia Gryaditskaya