
RAY TRACING FOR HOLOVIZIO LIGHT FIELD DISPLAYS

Oleksii Doronin, Attila Barsi

Holografika
Budapest, Hungary

{o.doronin, a.barsi}@holografika.com

Peter A. Kara, Maria G. Martini

WMN Research Group
Kingston University, London, UK
{p.kara, m.martini}@kingston.ac.uk

ABSTRACT

Ray tracing is a well-known method of virtual 3D scene vi-
sualization. Nowadays it is mostly used for the rendering of
photo-realistic static pictures for conventional 2D displays. In
this paper, we describe the implementation of a ray tracing al-
gorithm for a specific type of 3D rendering system, namely
for the HoloVizio horizontally parallax light field display. We
discuss the difficulties of the implementation of ray tracing
for such systems, together with their solutions, as well as the
benefits that could not apply to conventional 2D rendering
systems.

Index Terms— ray tracing, light field, light field display.

1. INTRODUCTION

Ray tracing can provide visual realism by simulating the na-
tural behavior of light rays as they reflect from the objects in a
virtual scene. The basic ray tracing technique was introduced
in 1979 by Whitted [1]. This technique was immediately re-
cognized in the field of computer graphics as one that can
provide the rendering of quite complex visual effects, such as
reflections and refractions.

However, at the time of its introduction, this approach re-
quired too much computational power, thus making ray tra-
cing an ineligible method for real-time rendering. In spite of
being an effective method for rendering photo-realistic ima-
ges, ray tracing has been considered as a so-called offline-
only solution for decades. Over the years, it has been con-
stantly improved in terms of the quality of the resulting im-
age, but the offline-only attitude towards ray tracing is slowly
being changed as well, due to the huge variety of both al-
gorithmic and hardware improvements that are continuously
being introduced.

In the conventional 2D framework, ray tracing refers to
the generation of rays coming from the camera through each
pixel of the screen (primary rays), and checking where these
rays intersect the scene geometry. If the surface of the geo-
metry has reflective or refractive properties, additional rays
(secondary rays) are generated, originating from the hitting
positions of the primary rays towards the corresponding di-
rections. If any of the aforementioned rays intersect the scene

geometry at any point, additional shadow rays are generated
from the hit point towards each light source, in order to check
whether the surface of the hit point is occluded or not.

Beside ray tracing, many alternative solutions for simula-
ting the light behavior (e.g., global illumination, ambient oc-
clusion, bidirectional path tracing, etc.) have been introduced
as well. They do contribute to the aimed visual realism, but
the scope of this paper is solely set on ray tracing.

In this paper, we describe the application of the ray tracing
algorithm for the a real-life industrial light field visualization
system, namely the HoloVizio system. The paper details the
way of generating the primary rays for such system. We also
prove that the application of the ray tracing approach is be-
neficial for the HoloVizio light field system (compared to the
rasterization methods), as it can handle the non-linear distor-
tion of the geometric primitives in the output images.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses the related work in this research area. An
overview of the light field system used in our research is given
in Section 3, with the details of implementation described in
Section 4. The results of the testing of our system are pro-
vided in Section 5. The paper is concluded in Section 6.

2. RELATED WORK

The work of Wald et al. [2] can be considered as a good
survey of different methods to improve the basic algorithm.
Keller et al. [3] summarizes recent advancements in the field
of ray tracing in form of an academic course, discussing seve-
ral low- and high-level frameworks (Embree, OSPRay, Fire-
Render, FireRays, NVIDIA OptiX).

In order to increase the running speed of ray tracing, sev-
eral acceleration structures have been introduced. The bound-
ing volume hierarchy (BVH) [4, 5, 6, 7, 8] is perhaps the most
commonly used one. However, other options (e.g., kd-tree
[9], bounding interval hierarchy [10], uniform grid [11]) are
also possible. Other directions of work on ray tracing include
different methods for the improvement of the quality of the
resulting image (e.g., multi-sampling and anti-aliasing [12],
defocus effect and motion blur [13, 14]), which can necessi-
tate changes in the algorithm itself.



Fig. 1: Two-plane parameterization of light field.

Fig. 2: Plane-line parameterization of light field.

Fig. 3: Plane-line parameterization in HoloVizio.

The fundamental application of ray tracing to 3D visuali-
zation has already been described by several researchers. A
method for fast generation of pictures from different viewer
positions was introduced by Levoy and Hanrahan [15]. The
application of this approach to real-life lumigraph image-based
rendering systems is introduced by Isaksen et al. [16]. Re-
search in the field of virtual reality is introduced by Wald et
al. [17], and for augmented reality by Scheer et al. [18].

According to the knowledge of the authors, more recent
advancements in the field of ray tracing mostly focus on the
improvement of well-known algorithms (or certain parts these
algorithms), or optimizing them for specific platforms, rather
than inventing new methods. For example, Catalano et al.
[19] introduced a framework for the global illumination algo-
rithm that uses point clouds and optimizes the work of shaders.
Benthin et al. [20] presented a method for constructing a
two-level BVH, which can be considered as a good trade-off
between the overall BVH quality and its construction speed.
Binder and Keller [21] developed a method to ray trace bi-
cubic Bezier patches together with conventional primitives.
Wald et al. [22] introduced a specific acceleration structure
(the P-k-d tree) that is optimal for ray tracing a large col-
lection of spherical primitives (e.g., particles, molecules, ce-
lestial bodies). Benthin et al. [23] presented a method for
the adaptive tesselation of primitives. However, we could not
find any sources in the scientific literature that would describe
the application of the ray tracing algorithm to a real-life light
field display. Therefore, we introduce an implementation of
ray tracing algorithm for the HoloVizio [24, 25] light field
display system.

In computer graphics, there is a common assumption that
the characteristics of light do not change within the same ray
of light. Under this assumption, it is suitable to use the two-
plane parameterization [26] of light field (see Figure 1). It
defines every possible ray of light in the light field by deter-
mining the coordinates of intersections of the ray with two
parallel planes. This parameterization represents a 4D space:
the first two dimensions are the plane coordinates of the first
plane, and last two are the plane coordinates of the second
plane.

3. OVERVIEW OF THE HOLOVIZIO SYSTEM

The two-plane 4D parameterization (see Figure 1) is probably
the most frequently used for parameterizing the full-parallax
light field. One plane in this parameterization can be con-
sidered as the screen plane (where the light sources can be
placed), and the another as the observer plane (where the
viewers can perceive light field).

For the horizontally-parallax light field systems (like Holo-
Vizio), Balázs et al. [24] suggested to use the 3D plane-line
parameterization (see Figure 2). In this case, the observer
plane can be substituted with the observer line.

The HoloVizio system inherently uses the described plane-



Fig. 4: Rays of light emitted by the optical modules (left), and the primary rays in ray tracing (right).

line parameterization. In its most simple form, this system
consists of a semi-transparent screen with special optical pro-
perties, and a row of optical modules placed behind it (see
Figure 2). When an individual ray of light from an optical
module passes through the screen, it gets diffused in all direc-
tions, but with a different amount of scattering. As vertical
scattering is very strong, we assume that the rays are scat-
tered uniformly in all vertical directions. Among vertically
scattered rays, we consider only those ones that will eventu-
ally hit the observer line (see Figures 3 and 4). The horizontal
scattering is quite weak, and we can neglect it. Therefore, for
the purpose of parameterizing the initial ray tracing setup, we
assume that each ray of light that originates from the optical
module, is then refracted at the screen plane in order to hit the
observer line while keeping its initial horizontal direction.

Fig. 5: Relationship between the spaces in HoloVizio.

The input information for each optical module in the Holo-
Vizio system is internally represented as a 2D texture. At each
pixel, this texture contains the color of the appropriate ray of
light coming from the optical module (see Figure 4). For con-
venience, we differentiate between the three different spaces:
the world space (in which the coordinates of the virtual scene
are stored), the physical space (where the transformations of
rays are computed), and the image space (coordinates of a tex-
ture for each individual optical module). The affine transfor-
mation from the world space to the physical space can be de-
fined as the transformation between two matching rectangular
parallelepipeds, the coordinates of which are expressed in the
corresponding spaces. The mapping from the physical space
to the image space is calculated taking into consideration the
position and direction of the optical module and the screen
curvature, together with its diffusion through the screen sur-
face. Therefore, it is neither affine nor homogeneous. Figure
5 shows the relationship between the aforementioned spaces.

4. IMPLEMENTATION

According to the knowledge of the authors, the research pre-
sented in this paper is the first successful attempt to imple-
ment ray tracing on an actual light field display. In this sec-
tion, we introduce our implementation of the algorithm, and
in the next section, we detail the results obtained for different
3D models and scenes.



(a) Rasterization (linear interpolation) (b) Ray tracing (c) Difference (400% amplification)

Fig. 6: Difference between a conventional rasterization algorithm and ray tracing for the optical module image.

4.1. Generation of Primary Rays

The primary rays for ray tracing in the HoloVizio system are
generated in a way that they should be inverse to the rays that
hit the observer line from the optical module (see Figure 4
and Algorithm 1). Therefore, all primary rays start at a cer-
tain position on the observer line, and go through the corre-
sponding point on the screen plane. The starting positions and
directions of the primary rays are computed per pixel of the
optical image. These computations are done in the physical
space. Generally speaking, no pair of the primary rays should
share the same starting position or direction – in contrast to
the conventional 2D ray tracing. It is also important to state
that the starting positions and directions of the primary rays
do not change in time while the HoloVizio system operates;
the transformation from the physical space to each particular
image space is constant in time. To keep all necessary in-
formation about the primary rays during the operation of the
system, we use two 2D textures for each optical module: one
for the starting positions (origins texture), and another for the
directions (directions texture).

Algorithm 1 Generation of primary rays.

pixel← textural (x, y) coordinates of current pixel;
optiRay← emitRayFromOpticalModule(pixel);
screenRay← diffuseRayThroughScreen(optiRay);
primRay.origin← hitObserverLine(screenRay);
primRay.dir←− screenRay.dir;

Algorithm 1 calculates the origins and directions of the
primary ray in the physical space for a given (x, y) position
in the image space. This implicitly defines the mapping from
the physical space to the image space. In this mapping, one
point of the image space corresponds to a line (aligned with a
primary ray) in the physical space.

The affine transformation from the world space to the phy-
sical space can be defined much easier. In the world space, let
us encapsulate the volume that we would like to display by
a rectangular parallelepiped BW . In the physical space, let
us encapsulate the volume that we can actually display, by
a rectangular parallelepiped BP . The affine transformation,
that corresponds to the linear bijective mapping from BW to
BP , is the transformation from the world space to the physical
space that we are looking for.

4.2. Implemented Features

For testing purposes, we limit ourselves to static scenes only.
We choose to use the BVH [7] with axis-aligned bounding
boxes (AABB) as the acceleration structure. Our version of
BVH is constructed using the top-bottom SAH partitioning
[8] with 32 bins. This process is implemented as a single-
thread C++ code. Each BVH node is represented by a 32-
byte structure. After construction, the array of BVH nodes is
uploaded into the GPU memory using appropriate OpenGL
buffer.

The rendering phase of our algorithm is implemented as
two OpenGL compute shaders: the traversal shader and the
drawing shader. The traversal shader takes two textures (ray
origins and ray positions) and two OpenGL buffers (array
of BVH nodes and array of geometric primitives) as the in-
put. As the output, it fills the intersection buffer (OpenGL
buffer) with all necessary information about the intersections
of all primary and secondary rays with the scene geometry,
and the index texture that contains the indices of the intersec-
tion buffer. The drawing shader takes the intersection buffer,
index texture and the scene geometry as the input, together
with all necessary textures for material rendering in OpenGL
bindless texture format. After the application of lighting and
shading, it renders the final texture that is further used by the
HoloVizio optical module. We use a slightly improved ver-
sion of the stack-less approach of Hapala et al. [5] as the
traversal algorithm.



5. RESULTS

5.1. Correction of the Output Image

As it was explained in Section 3, the mapping from the phy-
sical space to the image space is not homogeneous and not
invertible. Therefore, when some geometric primitive (e.g.,
triangle) is rendered, it is not correct to apply the linear inter-
polation to get the correct positions of the points inside this
primitive. This implies that the application of conventional
rasterizer-type algorithms (e.g., OpenGL vertex/fragment sha-
der pair) is not always suitable for the HoloVizio light field
display. An acceptable solution for rasterized rendering is the
tesselation of the geometry in order to keep the interpolation
error small.

In contrast, the primary rays in the introduced ray tracing
algorithm are generated in a way to simulate the actual be-
havior of light coming from each optical module. This means
that the application of ray tracing algorithm will result in get-
ting the correct position information for all visible points of
the virtual scene.

Figure 6 shows an optical module texture with a rendered
primitive of a large size on it. We choose to render a trian-
gle with world coordinates of its vertices (1, 0, 0), (0, 1, 0),
(0, 0, 1). The RGB values of this image are equal to the ap-
propriate world coordinates of the triangle (R for x, G for
y, B for z). The left part of the figure (a) is rendered with
the help of conventional rasterizer with linear interpolation
between vertices. The middle part (b) is rendered with the
introduced ray tracing algorithm. The right part (c) is the
difference image between the left and central, obtained with
the help of Compressonator tools [27], with difference being
magnified by 400%.

One may argue that in most scenes the size of the geomet-
rical primitives is small, and thus, the visual difference be-
tween the optical module images obtained with conventional
rasterizer and ray tracing can hardly be perceived. This argu-
ment is true in case there is no post-processing step, which
would actually require the correct position information. In
different scenarios (i.e., if the screen-space ambient occlu-
sion algorithm [28] is applied), the quality of the resulting
image could be severely degraded. At the end of the day, it
is perceived quality that determines the success and the actual
performance of the solution at the consumer’s side, thus such
visual degradation should be avoided.

5.2. Performance

We measured the performance of the ray tracing algorithm on
a simulation of the HoloVizio environment, running on a ma-
chine with Intel i7-5820K 3.30GHz CPU and GeForce GTX
960 video card. The simulated system included only one op-
tical module with the image resolution of 1024× 768 pixels.
We tested three scenes (see Figure 7): the Cornell box with
reflecting floor (1110 triangles, no textures), a set of geomet-

(a) Cornell

(b) Shapes

(c) Statue

Fig. 7: Pictures for one optical module.



rical shapes with two refracting objects (1556 triangles, no
textures), and a model of a statue (5011 triangles, 3 textures).
We set the maximum depth of ray tracing as 5, and used 4
directional light sources with different directions. For each
scene, we rendered 100 frames and measured the average time
to render a single frame (see Table 1).

ms/fr fps
Cornell 146.05 6.85
Shapes 205.43 4.87
Statue 1084.64 0.922

Table 1: Measured average performance in milliseconds per
frame (first column) and frames per second (second column).

We acknowledge that the achieved performance results
are insufficient for modern-day real-time computer graphics.
However, we proved that it is possible to adjust the ray tra-
cing related algorithms for real light field displays, and there
can be a lot of possibilities to make further research on perfor-
mance improvement. For example, one can consider the im-
plementation of packetized traversal [7]. Although this tech-
nique is capable to produce a significant speedup for the con-
ventional ray tracing, there are at least two problems for op-
timizing it for the HoloVizio system. First, the primary rays
are significantly less aligned with each other on the HoloVizio
system (compared to a conventional system), which will make
it harder to define an optimal bounding volume (frustum) for
them. Second, the conventional definition of a frustum as
a four-sided pyramid may be not an optimal choice for the
bunch of primary rays on the HoloVizio system. Therefore,
the in-depth performance analysis with real solutions on per-
formance improvement stays outside the scope of this paper.

Figure 8 contains the footage of the statue rendered and
displayed on a HoloVizio 640RC light field system. By the
time of this paper, the mentioned HoloVizio system is not
available in the market, and the closest available analogue is
the HoloVizio 722RC system [29].

6. CONCLUSIONS

In this paper, we discussed the possibility of the implemen-
tation of ray tracing on the HoloVizio light field display sys-
tem, with its benefits and pitfalls. The research shows that
the conventional ray tracing algorithm can be implemented
on this system, with the only difference in the generation of
the primary rays that is specific for this type of displays. The
application of ray tracing is beneficial for the HoloVizio sys-
tem, compared to the conventional rasterization algorithms,
in terms of more precise construction of the resulting image
for the optical modules. We also conclude that a visualiza-
tion algorithm based on ray tracing is a better choice for such
system, if additional post-processing steps are required.

Fig. 8: Photo of the HoloVizio 640RC system displaying
a ray-traced scene.

7. ACKNOWLEDGEMENTS

The research in this paper was done as a part of and was
funded from the European Unions Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie grant
agreement No 676401, ETN-FPI, and No 643072, Network
QoE-Net.

8. REFERENCES

[1] Turner Whitted. An Improved Illumination Model for
Shaded Display. volume 23, pages 343–349, New York,
NY, USA, June 1980. ACM.



[2] Ingo Wald, William R. Mark, Johannes Günther,
Solomon Boulos, Thiago Ize, Warren Hunt, Steven G.
Parker, and Peter Shirley. State of the Art in Ray Tracing
Animated Scenes. In Computer Graphics Forum, vol-
ume 28, pages 1691–1722. Wiley Online Library, 2009.

[3] Alexander Keller, Ingo Wald, Takahiro Harada, Dmitry
Kozlov, Ralf Karrenberg, Luke Peterson, and Tobias
Hector. The Quest for the Ray Tracing API. In ACM
SIGGRAPH 2016 Courses, SIGGRAPH ’16, pages
25:1–25:1, New York, NY, USA, 2016. ACM.

[4] Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blel-
loch. Efficient BVH Construction via Approximate Ag-
glomerative Clustering. In Proceedings of the 5th High-
Performance Graphics Conference, HPG ’13, pages 81–
88, New York, NY, USA, 2013. ACM.

[5] Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil
Havran, and Philipp Slusallek. Efficient Stack-less BVH
Traversal for Ray Tracing. In Proceedings of the 27th
Spring Conference on Computer Graphics, SCCG ’11,
pages 7–12, New York, NY, USA, 2013. ACM.

[6] Daniel Kopta, Thiago Ize, Josef Spjut, Erik Brunvand,
Al Davis, and Andrew Kensler. Fast, Effective BVH
Updates for Animated Scenes. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graph-
ics and Games, I3D ’12, pages 197–204, New York, NY,
USA, 2012. ACM.

[7] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray
Tracing Deformable Scenes using Dynamic Bounding
Volume Hierarchies. ACM Trans. Graph., 26(1), Jan-
uary 2007.

[8] Ingo Wald. On fast Construction of SAH-based Bound-
ing Volume Hierarchies. In Interactive Ray Tracing,
2007. RT’07. IEEE Symposium on, pages 33–40. IEEE,
2007.

[9] Ingo Wald and Vlastimil Havran. On building fast kd-
Trees for Ray Tracing, and on doing that in O(N log N).
In Interactive Ray Tracing 2006, IEEE Symposium on,
pages 61–69. IEEE, 2006.

[10] Carsten Wächter and Alexander Keller. Instant Ray
Tracing: The Bounding Interval Hierarchy. In Proceed-
ings of the 17th Eurographics Conference on Rendering
Techniques, EGSR ’06, pages 139–149, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Associa-
tion.

[11] John Amanatides and Andrew Woo. A Fast Voxel
Traversal Algorithm for Ray Tracing. In Eurographics,
volume 87, pages 3–10, 1987.

[12] Maxim Shevtsov, Mikhail Letavin, and Alexey Rukhlin-
skiy. Low Cost Adaptive Anti-Aliasing for Real-Time
Ray-Tracing. In Proceedings of GraphiCon2010, pages
45–48. St.Petersburg State University, 2010.

[13] Solomon Boulos, Dave Edwards, J. Dylan Lacewell, Joe
Kniss, Jan Kautz, Peter Shirley, and Ingo Wald. Interac-
tive Distribution Ray Tracing. SCI Institute, University
of Utah, Technical Report, 2006.

[14] Qiming Hou, Hao Qin, Wenyao Li, Baining Guo, and
Kun Zhou. Micropolygon Ray Tracing with Defocus
and Motion Blur. ACM Trans. Graph., 29(4):64:1–
64:10, July 2010.

[15] Marc Levoy and Pat Hanrahan. Light Field Rendering.
In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’96, pages 31–42, New York, NY, USA, 1996. ACM.

[16] Aaron Isaksen, Leonard McMillan, and Steven J.
Gortler. Dynamically Reparameterized Light Fields. In
Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’00, pages 297–306, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[17] Ingo Wald, Andreas Dietrich, Carsten Benthin, Alexan-
der Efremov, Tim Dahmen, Johannes Gunther, Vlastimil
Havran, Hans-Peter Seidel, and Philipp Slusallek. Ap-
plying Ray Tracing for Virtual Reality and Industrial
Design. In Interactive Ray Tracing 2006, IEEE Sym-
posium on, pages 177–185. IEEE, 2006.

[18] Fabian Scheer, Oliver Abert, and Stefan Müller. To-
wards Using Realistic Ray Tracing in Augmented Real-
ity Applications with Natural Lighting. In GI Workshop
ARVR, volume 7, 2007.

[19] Enzo Catalano, Rajko Yasui-Schöffel, Ken Dahm, Niko-
laus Binder, and Alex Keller. GI Next: Global Illumina-
tion for Production Rendering on GPUs. In ACM SIG-
GRAPH 2016 Talks, SIGGRAPH ’16, pages 69:1–69:2,
New York, NY, USA, 2016. ACM.

[20] Carsten Benthin, Sven Woop, Ingo Wald, and Attila T.
Áfra. Improved Two-level BVHs Using Partial Re-
braiding. In Proceedings of High Performance Graph-
ics, HPG ’17, pages 7:1–7:8, New York, NY, USA,
2017. ACM.

[21] Nikolaus Binder and Alexander Keller. Stackless Ray
Tracing of Patches from Feature-adaptive Subdivision
on GPUs. In ACM SIGGRAPH 2015 Talks, SIGGRAPH
’15, pages 22:1–22:1, New York, NY, USA, 2015.
ACM.



[22] Ingo Wald, Aaron Knoll, Gregory P. Johnson, Will
Usher, Valerio Pascucci, and Michael E. Papka. CPU
Ray Tracing Large Particle Data with Balanced P-k-d
Trees. In IEEE ScientificVisualization Conference 2015
(SciVis), pages 57–64. IEEE, 2015.

[23] Carsten Benthin, Sven Woop, Matthias Nießner, Kai
Selgrad, and Ingo Wald. Efficient Ray Tracing of Subdi-
vision Surfaces Using Tessellation Caching. In Proceed-
ings of the 7th Conference on High-Performance Graph-
ics, HPG ’15, pages 5–12, New York, NY, USA, 2015.
ACM.

[24] Ákos Balázs, Attila Barsi, Péter T. Kovács, and Tibor
Balogh. Towards mixed reality applications on light-
field displays. In 3DTV-Conference: The True Vision-
Capture, Transmission and Display of 3D Video (3DTV-
CON), 2014, pages 1–4. IEEE, 2014.

[25] Tibor Balogh, Péter T. Kovács, and Zoltán Megyesi.
HoloVizio 3D Display System. In Proceedings of the
First International Conference on Immersive Telecom-
munications, ImmersCom ’07, pages 19:1–19:5, ICST,
Brussels, Belgium, Belgium, 2007. ICST (Institute for
Computer Sciences, Social-Informatics and Telecom-
munications Engineering).

[26] Xianfeng Gu, Steven J. Gortler, and Michael F. Cohen.
Polyhedral Geometry and the Two-Plane Parameteriza-
tion. In Proceedings of the Eurographics Workshop on
Rendering Techniques ’97, pages 1–12. Springer-Verlag,
London, UK, UK, 1997.

[27] Compressonator.
http://gpuopen.com/gaming-product/compressonator/
(retrieved July 2017).

[28] Oleksii Doronin, Peter A. Kara, Attila Barsi, and
Maria G. Martini. Screen-Space Ambient Occlusion for
Light Field Displays. In 25th International Conference
in Central Europe on Computer Graphics, Visualization
and Computer Vision (WSCG2017), 2017.

[29] Holovizio 722RC light field display.
http://www.holografika.com/Products/
HoloVizio-722RC.html (retrieved July 2017).


