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Abstract—The performance of a light field reconstruction
algorithm is typically affected by the disparity range of the input
Sparsely-Sampled Light Field (SSLF). This paper finds that (i)
one of the state-of-the-art video frame interpolation methods,
i.e. adaptive Separable Convolution (SepConv), is especially
effective for the light field reconstruction on a SSLF with a
small disparity range (< 10 pixels); (ii) one of the state-of-the-art
light field reconstruction methods, i.e. Shearlet Transformation
(ST), is especially effective in reconstructing a light field from a
SSLF with a moderate disparity range (10-20 pixels) or a large
disparity range (> 20 pixels). Therefore, to make full use of
both methods to solve the challenging light field reconstruction
problem on SSLFs with moderate and large disparity ranges,
a novel method, referred to as Interpolation-Enhanced Shearlet
Transform (IEST), is proposed by incorporating these two ap-
proaches in a coarse-to-fine manner. Specifically, ST is employed
to give a coarse estimation for the target light field, which is
then refined by SepConv to improve the reconstruction quality
of parallax views involving small disparity ranges. Experimental
results show that IEST outperforms the other state-of-the-art
light field reconstruction methods on nine challenging horizontal-
parallax evaluation SSLF datasets of different real-world scenes
with moderate and large disparity ranges.

Index Terms—Light Field Reconstruction, Parallax View Gen-
eration, Adaptive Separable Convolution, Shearlet Transform,
Interpolation-Enhanced Shearlet Transform

I. INTRODUCTION

A light field can be considered as a 4D approximation of

the plenoptic function parameterized by two parallel planes

(camera plane and image plane) [1]; therefore, a 4D light

field is typically composed of camera images sampled on a

regular 2D grid [2] or an irregular 2D grid [3]. If the disparities

between adjacent views in a light field are less than one pixel,

this light field can be referred to as a Densely-Sampled Light

Field (DSLF) [4]. How to capture a horizontal-parallax light

field is illustrated in Fig. 1. As can be seen from this figure, the

horizontal-parallax desired light field is captured by a system

with cameras uniformly distributed along the horizontal axis

‘s’ with the same camera orientation. Let this desired target

light field be denoted by D = {Ii|1 6 i 6 m}. Due to the

hardware limitations of most of the light field capture systems

in real-world environments, it is difficult for them to capture all

the m parallax images of the desired target light field D with

s

Figure 1. A target light field D = {Ii|1 6 i 6 m} to be reconstructed. Solid-
line green triangles constitute an input SSLF S. Dash-line yellow triangles
are the missing parallax views to be reconstructed for the target light field D.

small disparities. In other words, such camera systems can

capture only part of parallax views of the target light field D,

which are represented by the solid-line green cameras in Fig. 1.

Let this Sparsely-Sampled Light Field (SSLF) be denoted by

S , S ⊆ D and |S| = n (< m). This paper aims to solve the

problem of reconstructing the missing parallax views for the

target light field D from the input SSLF S . The relationship

between them is determined by the interpolation rate δ, where

δ = m−1

n−1
. It is obvious that different interpolation rates

correspond to different disparity conditions for the input SSLF

S . Besides, if the target light field D is a DSLF, the light field

reconstruction on S can be called DSLF reconstruction.

Motivation. The adaptive Separable Convolution (SepConv)

approach [5] is one of the state-of-the-art video frame inter-

polation methods, which is extended by Gao and Koch in [6]

for solving the DSLF reconstruction problem in a recursive

manner, treating an input horizontal-parallax light field as

a video captured by a virtual camera moving horizontally.

The restriction of SepConv is that it may fail in light field

reconstruction on SSLFs with larger disparity ranges, because

its novel view synthesis ability is limited by the size of the

convolution kernels. For more details refer to Sect. IV-B. Al-

ternatively, one of the state-of-the-art light field reconstruction

methods, i.e. Shearlet Transform (ST) [7, 8], is a universal

solution to DSLF reconstruction and does not suffer from such

restriction. This paper focuses on investigating how to employ

the advantages of these two methods to better reconstruct light

fields from SSLFs with moderate and large disparity ranges.

To address the challenging light field reconstruction prob-

lem for the cases of moderate and large disparity ranges, a

novel method, referred to as Interpolation-Enhanced Shearlet

Transform (IEST), is proposed in this paper. The proposed

IEST method fully leverages the advantages of both ST and



Figure 2. Disparity estimation for nine evaluation SSLFs Sµ with an
interpolation rate δ = 16 using PWC-Net [9].

SepConv in a coarse-to-fine manner to reconstruct a target light

field from a horizontal-parallax SSLF with a moderate or large

disparity range. Specifically, ST is applied to reconstruct the

target light field D from an input SSLF S , so that the missing

parallax views in S are coarsely estimated. Two elaborately-

designed parallax view refinement strategies, corresponding to

different interpolation rates δ ∈ {8, 16}, are then performed

on the coarsely-estimated D in a recursive way. Experimental

results indicate that IEST outperforms all the other state-

of-the-art methods on nine challenging horizontal-parallax

evaluation SSLF datasets for both the moderate disparity range

(10-19 pixels) and the large disparity range (20-38 pixels).

Moreover, for any evaluation SSLF dataset with a small

disparity range (5-9.5 pixels), SepConv achieves better light

field reconstruction performance than ST.

II. RELATED WORK

Learning-based video frame synthesis. Niklaus et al. employ

a deep fully Convolutional Neural Network (CNN) to estimate

pixel-wise spatially-adaptive 2D convolution kernels, which

are applied on the two consecutive input video frames to

synthesize an intermediate one [10]. However, for each image

pixel, this method predicts a n×n (n = 41) convolution kernel,

which will be prohibitively expensive in memory requirement

if the input images are in high resolution. To tackle this

problem, Niklaus et al. propose a spatially-adaptive Separable

Convolution (SepConv) approach, which approximates each

of the 2D convolution kernels with a pair of 1D kernels, thus

reducing the number of kernel parameters from n2 to 2n for

each 2D convolution kernel [5]. Liu et al. propose an end-to-

end deep network, i.e. Deep Voxel Flow (DVF), to synthesize a

video frame in either interpolation or extrapolation with sharp

results [11]. More recently, Niklaus et al. fully leverage a state-

of-the-art optical flow algorithm, i.e. PWC-Net [9], to estimate

bidirectional flow between two consecutive input video frames,

which is applied to pre-warp the input video frames together

with their corresponding per-pixel context maps extracted by a

pre-trained neural network [12]. All these pieces of pre-warped

information are then fed to a video frame synthesis network,

i.e. a modified GridNet [13], to interpolate an intermediate

video frame at a desired temporal position. Jiang et al. also

estimate bidirectional optical flow between two consecutive

input video frames via a flow computation CNN [14]. The

estimated optical flow is then refined by a flow interpolation

Step 1 Step 2 Step 3

(a) Interpolation rate δ = 8 (for moderate disparity range, i.e. 10-20 pixels)

Step 1 Step 2

(b) Interpolation rate δ = 16 (for large disparity range, i.e. > 20 pixels)

Figure 3. Flowcharts of IEST for light field reconstruction from SSLFs at
different interpolation rates, i.e. δ ∈ {8, 16}.

CNN, which additionally predicts a soft visibility map. Both

the refined optical flow and predicted soft visibility map are

utilized to interpolate an intermediate video frame at any

arbitrary time step via warping and fusion. Meyer et al. apply

the steerable pyramid filters [15] to decompose the input

two consecutive video frames [16]. Their decompositions,

consisting of amplitudes, phases and low-pass residuals, are

fed to a decoder-only neural network, i.e. PhaseNet, to predict

the corresponding decomposition of the intermediate frame

in order to fulfill image reconstruction. Visually preferable

results are achieved by this method in challenging scenarios

containing lighting changes or motion blur.

Light field angular super-resolution. Kalantari et al. propose

a learning-based view synthesis approach, which is composed

of disparity and color estimators, for synthesizing novel views

from a sparse set of sub-aperture images of a micro-lens array-

based consumer light field camera [17]. Wu et al. present

a blur-restoration-deblur framework for Epipolar-Plane Image

(EPI) interpolation to reconstruct dense light fields [18]. A

residual network with three convolution layers is utilized

to restore the angular detail of a blurred and up-sampled

EPI. However, due to the limitation in the blurring kernel

size and bicubic interpolation, this method can only handle

SSLF data with very small disparity ranges (up to 5 pixels).

Vagharshakyan et al. reconstruct DSLFs from SSLFs by

exploiting EPI sparsification in shearlet domain, which has

been demonstrated to be effective in reconstructing Lambertian

scenes and non-Lambertian scenes containing semi-transparent

objects [7, 8]. Gao and Koch employ a fine-tuning strategy to

enhance the motion-sensible convolution kernels of the state-

of-the-art video frame interpolation method, i.e. SepConv, and

propose Parallax-Interpolation Adaptive Separable Convolu-

tion (PIASC) to reconstruct a DSLF from a horizontal-parallax

SSLF in a recursive way [6]. Yeung et al. design an end-

to-end 4D convolutional light field reconstruction network

consisting of view synthesis and view refinement phases for

fast light field reconstruction from a SSLF [19]. Wang et

al. also propose an end-to-end learning framework for fast

light field reconstruction [20]. Their network includes two 2D

strided convolutions for the interpolation of stacked sparsely-

sampled EPIs and two detail-restoration 3D CNNs for restor-

ing high-frequency details of these interpolated EPI volumes.

In conclusion, studies in [19, 20] can only be applied on full-
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(j) Cutting and scaling

Figure 4. The middle views of nine evaluation datasets. Sub-image (j) illustrates the image cutting and scaling strategy in Sect. IV-A.

(a) Interpolation rate δ = 4 (5 6 drange 6 9.5 pixels) (b) Interpolation rate δ = 8 (10 6 drange 6 19 pixels) (c) Interpolation rate δ = 16 (20 6 drange 6 38 pixels)

Figure 5. Minimum per-view PSNR results (in dB, explained in Sect. IV-A) of different light field reconstruction methods on nine evaluation datasets with
different interpolation rates δ ∈ {4, 8, 16}.

parallax SSLF data. In addition, for different intermediate-

view interpolation factors, i.e. δ in Sect. I, these methods need

to re-train their networks. Nevertheless, this paper focuses

on investigating a universal light field reconstruction solution

w.r.t. input SSLFs with moderate and large disparity ranges.

III. METHODOLOGY

A. Shearlet Transform (ST)

For tackling the DSLF reconstruction problem on SSLFs

with varying disparities, ST is originally proposed in [7] and

extended in [8, 21, 22]. The key idea of ST is to design an

elaborately-tailored universal shearlet system [7, 23], which

is exploited to perform sparsity regularization in the shearlet

transform domain for the sparsely-sampled EPIs of an input

SSLF via an iterative α-adaptive algorithm [7] or a double

overrelaxation (DORE) algorithm [8]. The performance of the

ST algorithm relies on the precision of the disparity estimation

of the input SSLF. Specifically, the minimum disparity dmin

and maximum disparity dmax of this SSLF should be precisely

estimated before applying ST. The corresponding disparity

range of the input SSLF is derived from dmin and dmax,

i.e. drange = (dmax − dmin). Based on the value of the

estimated dmin, a pre-shearing step using cubic interpolation

is then applied on the input SSLF, so that the new minimum

disparity d′min = 0, the new maximum disparity d′max =
drange and the sheared input SSLF is able to be effectively

and efficiently processed by a shearlet system with ξ scales,

where ξ = ⌈log
2
drange⌉. Finally, a post-processing shearing

procedure is performed on the reconstructed DSLF in order

to compensate for the loss of the minimum disparity that is

eliminated in the pre-shearing step.

B. Interpolation-Enhanced Shearlet Transform (IEST)

Although ST is a universal solution to the light field

reconstruction problem on SSLFs with varying disparities,

it is not as effective as one of the state-of-the-art video

frame interpolation methods, i.e. SepConv, for light field

reconstruction from SSLFs with small disparity ranges. An

example for this phenomenon is shown in Fig. 5 (a), where the

interpolation rate δ = 4 equals to 5 6 drange 6 9.5 pixels,

derived from 20 6 drange 6 38 pixels in the case of δ = 16
in Fig. 2, for all the evaluation SSLFs Sµ. However, for SSLFs

with moderate and large disparity ranges, ST tends to be

more effective than SepConv as illustrated in Fig. 5 (b) and (c).

Intuitively, taking advantage of SepConv to refine the parallax

views of light fields that are reconstructed by ST from SSLFs

with moderate and large disparity ranges may improve the

final light field reconstruction performance. Therefore, a novel

light field reconstruction method, i.e. Interpolation-Enhanced

Shearlet Transform (IEST), is proposed. The IEST method

is specially designed for light field reconstruction on SSLFs

with moderate and large disparity ranges with a consideration

that the reconstructed parallax views of ST involving small

disparity ranges can be refined by SepConv. Depending on

different interpolation rates, two parallax view refinement

strategies of IEST are presented in Fig. 3. As shown in (a),

the first strategy is designed for the case of interpolation rate

δ = 8. Here, green circles stand for the ground-truth parallax

views from an input SSLF S (also see Fig. 1) and yellow

circles denote the parallax views reconstructed by ST. The

reconstructed parallax views represented by yellow circles are

then refined by SepConv recursively, which is depicted by

using three types of dash lines that represent Step 1, 2 and 3.



Table I
MINIMUM AND AVERAGE PER-VIEW PSNR RESULTS (IN DB, EXPLAINED IN SECT. IV-A) FOR THE PERFORMANCE EVALUATION OF DIFFERENT LIGHT

FIELD RECONSTRUCTION METHODS ON NINE EVALUATION DATASETS.

Minimum PSNR

(Interpolation rate δ = 8 and 10 6 drange 6 19 pixels)

SepConv (L1) [5] PIASC (L1) [6] ST [8] Proposed

D1 21.733 21.731 31.750 32.505

D2 25.087 25.103 25.375 25.807
D3 29.145 29.161 29.220 29.644
D4 29.729 29.760 29.399 29.893

D5 30.525 30.557 30.349 30.713

D6 29.039 29.044 32.203 33.023

D7 24.685 24.688 26.237 26.067
D8 25.558 25.576 26.438 26.763
D9 31.379 31.466 31.644 32.005

Average PSNR

(Interpolation rate δ = 8 and 10 6 drange 6 19 pixels)

SepConv (L1) [5] PIASC (L1) [6] ST [8] Proposed

D1 24.498 24.495 33.429 33.826

D2 26.625 26.648 26.666 27.144
D3 30.781 30.828 30.875 31.534
D4 32.344 32.446 32.189 32.972

D5 31.762 31.840 32.328 32.613

D6 31.333 31.383 34.843 36.034

D7 27.209 27.228 27.383 27.827

D8 27.299 27.332 27.732 28.151
D9 32.878 32.951 32.836 33.407

Minimum PSNR
(Interpolation rate δ = 16 and 20 6 drange 6 38 pixels)

SepConv (L1) [5] PIASC (L1) [6] ST [8] Proposed

D1 19.753 19.742 31.754 31.941
D2 20.118 20.123 23.839 23.964

D3 23.289 23.295 28.125 28.194

D4 24.073 24.084 28.430 28.529

D5 26.254 26.262 30.004 29.955
D6 26.307 26.317 32.368 32.504

D7 20.283 20.283 24.257 24.350
D8 20.419 20.423 24.831 25.184

D9 25.628 25.639 30.021 30.498

Average PSNR
(Interpolation rate δ = 16 and 20 6 drange 6 38 pixels)

SepConv (L1) [5] PIASC (L1) [6] ST [8] Proposed

D1 21.514 21.505 33.220 33.435
D2 22.779 22.807 25.285 25.467

D3 26.009 26.044 29.764 29.833

D4 27.408 27.483 30.677 30.933

D5 28.005 28.063 31.337 31.457

D6 28.779 28.838 34.100 34.224

D7 23.375 23.397 25.915 25.992
D8 23.158 23.196 26.542 26.775

D9 28.416 28.478 32.083 32.328

To be precise, each step uses two parallax views having a small

disparity range to synthesize the middle view between them.

For the interpolation rate δ = 16, the second strategy of IEST,

as shown in (b), refines the reconstructed parallax views from

ST with only two steps. It is worth to be mentioned that the

strategy of IEST designed for δ = 8 is especially effective for

the light field reconstruction on SSLFs with moderate disparity

ranges (10-20 pixels), while the second IEST strategy designed

for δ = 16 is more effective for the light field reconstruction

on SSLFs with large disparity ranges (> 20 pixels).

IV. EXPERIMENTS

A. Experimental Settings
Evaluation datasets. The dataset of High Density Camera Ar-

ray (HDCA) [24] is used for evaluating the performance of all

methods. This dataset has nine high-fidelity dense light fields

for different real-world scenes captured by a movable high-

resolution and high-quality DSLR camera. Eight of them have

the same angular resolution of 101×21. The remaining one has

an angular resolution of 99×21. The spatial resolution of these

light fields is 3976× 2652 pixels. Since the proposed method

and baseline approaches are originally designed for parallax

view generation using horizontal-parallax SSLFs, only the top

97 horizontal-parallax views of each light field are selected

for evaluation. However, these raw images have a problem

that some boundary regions have no color information due

to calibration, which is not fair for performance comparison

of different methods. To overcome this limitation, an image

cutting and scaling strategy is proposed as illustrated Fig. 4 (j).

In particular, a 95%-width image (at the right of the original

raw image) is cut and a 16 : 9-shape image at the bottom of this

cut image is then downscaled to a new resolution of 1280×720
pixels using bicubic interpolation. After performing these two

operations for all the light fields, nine horizontal-parallax light

field datasets Dµ are constructed and their middle views are

exhibited in Fig. 4 (a)-(i). Note that m = 97 for each ground-

truth light field dataset Dµ, where 1 6 µ 6 9.

Disparity estimation. From these nine ground-truth light field

datasets Dµ, the corresponding input SSLFs Sµ are construc-

ted by using different interpolation rates δ, i.e. δ ∈ {4, 8, 16},

as introduced in Sect. I. In order to perform ST method cor-

rectly, the disparity conditions of different SSLFs Sµ should be

estimated precisely. To tackle this problem, a state-of-the-art

optical flow method, i.e. PWC-Net [9], is applied to estimate

the bidirectional flow between neighboring views in Sµ for the

case of δ = 16. Note that only the horizontal components of

the calculated optical flow contain useful information, which

are leveraged to compute dmin, dmax and drange for each

Sµ as illustrated in Fig. 2. It can be found that the minimum

drange for all the SSLFs Sµ with the interpolation rate of 16
is around 20 pixels, which suggests that all the target light

fields Dµ are not DSLFs.

Evaluation criteria. The per-view PSNR is exploited to

evaluate the performance of different light field reconstruc-

tion methods. Additionally, for any parallax view generation

method evaluated on a dataset Dµ, the minimum and average

per-view PSNR values constitute the final evaluation criteria.

Implementation details. All the methods mentioned in this

paper are implemented using CUDA and executed on an

NVIDIA Titan Xp GPU. The pre-trained neural networks of

SepConv and PWC-Net are from [5] and [9], respectively.

Besides, the parameters of ST using the DORE algorithm are

set as same as [8], where α = 20 with 100 iterations and

a low-pass initial estimation. The construction of the shearlet

system used by ST relies on the estimated disparity range of

the input SSLF Sµ, as explained in Sect. III-A.

B. Results and Analysis
The minimum per-view PSNR values using different light

field reconstruction methods on all the evaluation SSLFs Sµ

at varying interpolation rates, i.e. δ ∈ {4, 8, 16}, are presented

in Fig. 5. Comparing (a), (b) and (c) in this figure, it can be

seen that SepConv achieves better performance than ST on

all the evaluation DSLFs for the case that interpolation rate



δ = 4. However, for higher interpolation rates, i.e. δ ∈ {8, 16},

the performance of SepConv is significantly worse than that

of ST for reconstructing the target light fields Dµ from Sµ.

The main reason for this is that (i) SepConv is not capable

of correctly interpolating novel views with repetitive patterns

that are smaller than the disparities between the input neigh-

boring parallax views, e.g., checkers of the checkerboards in

Fig. 4 (a); (ii) the size of the convolution kernel of SepConv is

51× 51 pixels, which restricts its novel view synthesis ability

w.r.t. two parallax images with moderate or large disparities.

Besides, directly increasing the convolutional kernel size of

SepConv involves re-training the whole network of SepConv

and increasing the memory demand, which will not be the best

solution to the light field reconstruction problem.

The minimum and average per-view PSNR values of differ-

ent light field reconstruction methods for interpolation rates

δ ∈ {8, 16} are also shown in Table I. The top row of this

table presents the light field reconstruction results for the case

of δ = 8, corresponding to 10 6 drange 6 19 pixels. It can

be found that (i) for the minimum-PSNR evaluation criteria,

the proposed IEST method achieves the best performance on

most of the evaluation DSLFs except for D7; (ii) for the

average-PSNR evaluation criteria, IEST performs significantly

better than all the baseline approaches. In addition, on D6,

IEST yields a substantial performance gain of 0.82 and 1.191
dB w.r.t. minimum and average PSNRs over the second-

best method, i.e. ST. This indicates that the proposed IEST

method is effective in light field reconstruction on SSLFs

with moderate disparity ranges, e.g., up to 19 pixels in given

examples. Moreover, SepConv and PIASC have almost the

same performance, which is better than ST on Dµ, µ ∈ {4, 5}
w.r.t. minimum-PSNR criterion. The bottom row of Table I

shows the light field reconstruction results for the case of

δ = 16, corresponding to 20 6 drange 6 38 pixels. The

proposed method outperforms all the other baseline methods

on all the evaluation DSLFs except for D5, where the min-

imum PSNR of IEST is only 0.049 dB less than that of ST.

This suggests that the proposed IEST method is also effective

for reconstructing light fields from SSLFs with large disparity

ranges, e.g., up to 38 pixels in given examples.

V. CONCLUSION

In this paper, a novel light reconstruction method, i.e. IEST,

is presented for reconstructing target light fields from in-

put SSLFs with moderate and large disparity ranges. IEST

takes full advantage of a state-of-the-art DSLF reconstruction

method, i.e. ST, and a state-of-the-art video frame interpolation

method, i.e. SepConv, to perform light field angular super-

resolution in a coarse-to-fine manner. Specifically, SepConv is

utilized to refine the light field reconstruction results of ST

in a recursive way. Experimental results on nine challenging

evaluation datasets demonstrate the effectiveness of IEST over

the other state-of-the-art light field reconstruction approaches

for both the moderate disparity range (10-19 pixels) and the

large disparity range (20-38 pixels).
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